Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import TrOCRProcessor, VisionEncoderDecoderModel | |
from PIL import Image | |
import numpy as np | |
import torch | |
# Load the primary OCR model (DeepDiveDev/transformodocs-ocr) | |
processor1 = TrOCRProcessor.from_pretrained("DeepDiveDev/transformodocs-ocr") | |
model1 = VisionEncoderDecoderModel.from_pretrained("DeepDiveDev/transformodocs-ocr") | |
# Load the fallback model (microsoft/trocr-base-handwritten) for handwritten text | |
processor2 = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten") | |
model2 = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten") | |
# Function to extract text from handwritten images | |
def extract_text(image): | |
try: | |
# Ensure input is a PIL Image | |
if isinstance(image, np.ndarray): | |
if len(image.shape) == 2: # Grayscale (H, W) -> Convert to RGB | |
image = np.stack([image] * 3, axis=-1) | |
image = Image.fromarray(image) | |
elif isinstance(image, str): # If file path is given, open the image | |
image = Image.open(image).convert("RGB") | |
# Maintain aspect ratio while resizing (better for OCR) | |
image.thumbnail((800, 800)) | |
# Process image with the first model | |
pixel_values = processor1(images=image, return_tensors="pt").pixel_values.to(torch.float32) | |
generated_ids = model1.generate(pixel_values) | |
extracted_text = processor1.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
# If output is short or incorrect, use the fallback model | |
if len(extracted_text.strip()) < 2: | |
inputs = processor2(images=image, return_tensors="pt").pixel_values.to(torch.float32) | |
generated_ids = model2.generate(inputs) | |
extracted_text = processor2.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
return extracted_text if extracted_text else "No text detected." | |
except Exception as e: | |
return f"Error: {str(e)}" | |
# Gradio UI for OCR Extraction | |
iface = gr.Interface( | |
fn=extract_text, | |
inputs=gr.Image(type="pil"), # Ensures input is a PIL image | |
outputs="text", | |
title="Handwritten OCR Extraction", | |
description="Upload a handwritten image to extract text using AI OCR.", | |
) | |
iface.launch() | |