Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import TrOCRProcessor, VisionEncoderDecoderModel | |
from PIL import Image | |
import numpy as np | |
import torch | |
# Load the primary model (DeepDiveDev/transformodocs-ocr) | |
processor1 = TrOCRProcessor.from_pretrained("DeepDiveDev/transformodocs-ocr") | |
model1 = VisionEncoderDecoderModel.from_pretrained("DeepDiveDev/transformodocs-ocr") | |
# Load the fallback model (microsoft/trocr-base-handwritten) | |
processor2 = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten") | |
model2 = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten") | |
# Function to extract text using both models | |
def extract_text(image): | |
try: | |
# Ensure the input is a PIL image | |
if isinstance(image, np.ndarray): | |
if len(image.shape) == 2: # Grayscale (H, W), convert to RGB | |
image = np.stack([image] * 3, axis=-1) | |
image = Image.fromarray(image) | |
else: | |
image = Image.open(image).convert("RGB") # Ensure RGB mode | |
# Resize for better accuracy | |
image = image.resize((640, 640)) | |
# Process with the primary model | |
pixel_values = processor1(images=image, return_tensors="pt").pixel_values | |
generated_ids = model1.generate(pixel_values) | |
extracted_text = processor1.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
# If output seems incorrect, use the fallback model | |
if len(extracted_text.strip()) < 2: | |
inputs = processor2(images=image, return_tensors="pt").pixel_values | |
generated_ids = model2.generate(inputs) | |
extracted_text = processor2.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
return extracted_text | |
except Exception as e: | |
return f"Error: {str(e)}" | |
# Gradio Interface | |
iface = gr.Interface( | |
fn=extract_text, | |
inputs="image", | |
outputs="text", | |
title="TransformoDocs - AI OCR", | |
description="Upload a handwritten document and get the extracted text.", | |
) | |
iface.launch() |