DeepDiveDev's picture
Update app.py
398e23b verified
raw
history blame
1.54 kB
import gradio as gr
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
from PIL import Image
import numpy as np
import torch
# Load TrOCR model and processor
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-large-handwritten")
model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-large-handwritten")
# Function to extract text from handwritten images
def extract_text(image):
try:
# Convert image to RGB if needed
if isinstance(image, np.ndarray):
if len(image.shape) == 2: # If grayscale (H, W), convert to RGB
image = np.stack([image] * 3, axis=-1)
image = Image.fromarray(image)
else:
image = Image.open(image).convert("RGB")
# Preprocessing (convert to grayscale for better OCR)
image = image.convert("L")
image = image.resize((640, 640))
# Process image
pixel_values = processor(images=image, return_tensors="pt").pixel_values
generated_ids = model.generate(pixel_values)
extracted_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
return extracted_text if extracted_text.strip() else "No text detected."
except Exception as e:
return f"Error: {str(e)}"
# Gradio Interface
iface = gr.Interface(
fn=extract_text,
inputs="image",
outputs="text",
title="Handwritten OCR Extractor",
description="Upload a handwritten image to extract text.",
)
# Launch the app
iface.launch()