Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import TrOCRProcessor, VisionEncoderDecoderModel | |
from PIL import Image | |
import numpy as np | |
import torch | |
# Load TrOCR model and processor | |
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-large-handwritten") | |
model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-large-handwritten") | |
# Function to extract text from handwritten images | |
def extract_text(image): | |
try: | |
# Convert image to RGB if needed | |
if isinstance(image, np.ndarray): | |
if len(image.shape) == 2: # If grayscale (H, W), convert to RGB | |
image = np.stack([image] * 3, axis=-1) | |
image = Image.fromarray(image) | |
else: | |
image = Image.open(image).convert("RGB") | |
# Preprocessing (convert to grayscale for better OCR) | |
image = image.convert("L") | |
image = image.resize((640, 640)) | |
# Process image | |
pixel_values = processor(images=image, return_tensors="pt").pixel_values | |
generated_ids = model.generate(pixel_values) | |
extracted_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
return extracted_text if extracted_text.strip() else "No text detected." | |
except Exception as e: | |
return f"Error: {str(e)}" | |
# Gradio Interface | |
iface = gr.Interface( | |
fn=extract_text, | |
inputs="image", | |
outputs="text", | |
title="Handwritten OCR Extractor", | |
description="Upload a handwritten image to extract text.", | |
) | |
# Launch the app | |
iface.launch() | |