DeepDiveDev commited on
Commit
300310b
·
verified ·
1 Parent(s): 911e4ac

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +78 -0
app.py ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import pytesseract
3
+ import cv2
4
+ import json
5
+ import xml.etree.ElementTree as ET
6
+ from transformers import TrOCRProcessor, VisionEncoderDecoderModel
7
+ from layoutparser import Detectron2LayoutModel
8
+ from transformers import GPT2LMHeadModel, GPT2Tokenizer
9
+ from stable_baselines3 import PPO
10
+
11
+ # Load OCR model
12
+ processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten")
13
+ model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten")
14
+
15
+ def preprocess_image(image_path):
16
+ image = cv2.imread(image_path)
17
+ gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
18
+ return gray
19
+
20
+ def extract_text(image_path):
21
+ image = preprocess_image(image_path)
22
+ text = pytesseract.image_to_string(image)
23
+ return text
24
+
25
+ def analyze_layout(image_path):
26
+ model = Detectron2LayoutModel("lp://PubLayNet/mask_rcnn_X_101_32x8d_FPN_3x/config")
27
+ image = cv2.imread(image_path)
28
+ layout = model.detect(image)
29
+ return layout
30
+
31
+ def generate_machine_readable_format(text, format_type='json'):
32
+ if format_type == 'json':
33
+ return json.dumps({"content": text})
34
+ elif format_type == 'xml':
35
+ root = ET.Element("Document")
36
+ content = ET.SubElement(root, "Content")
37
+ content.text = text
38
+ return ET.tostring(root, encoding='unicode')
39
+ return text
40
+
41
+ # Generative AI Model
42
+ GPT2_model = GPT2LMHeadModel.from_pretrained("gpt2")
43
+ GPT2_tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
44
+
45
+ def generate_structured_output(text):
46
+ inputs = GPT2_tokenizer.encode(text, return_tensors="pt")
47
+ outputs = GPT2_model.generate(inputs, max_length=500)
48
+ return GPT2_tokenizer.decode(outputs[0])
49
+
50
+ # Reinforcement Learning for Optimization
51
+ class DocumentConversionEnv:
52
+ def __init__(self):
53
+ self.state = None
54
+
55
+ def reset(self):
56
+ self.state = "start"
57
+ return self.state
58
+
59
+ def step(self, action):
60
+ reward = 1 if action == "optimize" else -1
61
+ self.state = "optimized" if action == "optimize" else "start"
62
+ return self.state, reward, False, {}
63
+
64
+ env = DocumentConversionEnv()
65
+ rl_model = PPO("MlpPolicy", env, verbose=1)
66
+ rl_model.learn(total_timesteps=1000)
67
+
68
+ def convert_document(image_path, output_format='json'):
69
+ text = extract_text(image_path)
70
+ layout = analyze_layout(image_path)
71
+ structured_output = generate_structured_output(text)
72
+ machine_readable_output = generate_machine_readable_format(structured_output, format_type=output_format)
73
+ return machine_readable_output
74
+
75
+ # Example usage
76
+ document_path = "sample_document.png"
77
+ converted_document = convert_document(document_path, output_format='json')
78
+ print(converted_document)