Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import pytesseract
|
3 |
+
import cv2
|
4 |
+
import json
|
5 |
+
import xml.etree.ElementTree as ET
|
6 |
+
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
|
7 |
+
from layoutparser import Detectron2LayoutModel
|
8 |
+
from transformers import GPT2LMHeadModel, GPT2Tokenizer
|
9 |
+
from stable_baselines3 import PPO
|
10 |
+
|
11 |
+
# Load OCR model
|
12 |
+
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten")
|
13 |
+
model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten")
|
14 |
+
|
15 |
+
def preprocess_image(image_path):
|
16 |
+
image = cv2.imread(image_path)
|
17 |
+
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
18 |
+
return gray
|
19 |
+
|
20 |
+
def extract_text(image_path):
|
21 |
+
image = preprocess_image(image_path)
|
22 |
+
text = pytesseract.image_to_string(image)
|
23 |
+
return text
|
24 |
+
|
25 |
+
def analyze_layout(image_path):
|
26 |
+
model = Detectron2LayoutModel("lp://PubLayNet/mask_rcnn_X_101_32x8d_FPN_3x/config")
|
27 |
+
image = cv2.imread(image_path)
|
28 |
+
layout = model.detect(image)
|
29 |
+
return layout
|
30 |
+
|
31 |
+
def generate_machine_readable_format(text, format_type='json'):
|
32 |
+
if format_type == 'json':
|
33 |
+
return json.dumps({"content": text})
|
34 |
+
elif format_type == 'xml':
|
35 |
+
root = ET.Element("Document")
|
36 |
+
content = ET.SubElement(root, "Content")
|
37 |
+
content.text = text
|
38 |
+
return ET.tostring(root, encoding='unicode')
|
39 |
+
return text
|
40 |
+
|
41 |
+
# Generative AI Model
|
42 |
+
GPT2_model = GPT2LMHeadModel.from_pretrained("gpt2")
|
43 |
+
GPT2_tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
|
44 |
+
|
45 |
+
def generate_structured_output(text):
|
46 |
+
inputs = GPT2_tokenizer.encode(text, return_tensors="pt")
|
47 |
+
outputs = GPT2_model.generate(inputs, max_length=500)
|
48 |
+
return GPT2_tokenizer.decode(outputs[0])
|
49 |
+
|
50 |
+
# Reinforcement Learning for Optimization
|
51 |
+
class DocumentConversionEnv:
|
52 |
+
def __init__(self):
|
53 |
+
self.state = None
|
54 |
+
|
55 |
+
def reset(self):
|
56 |
+
self.state = "start"
|
57 |
+
return self.state
|
58 |
+
|
59 |
+
def step(self, action):
|
60 |
+
reward = 1 if action == "optimize" else -1
|
61 |
+
self.state = "optimized" if action == "optimize" else "start"
|
62 |
+
return self.state, reward, False, {}
|
63 |
+
|
64 |
+
env = DocumentConversionEnv()
|
65 |
+
rl_model = PPO("MlpPolicy", env, verbose=1)
|
66 |
+
rl_model.learn(total_timesteps=1000)
|
67 |
+
|
68 |
+
def convert_document(image_path, output_format='json'):
|
69 |
+
text = extract_text(image_path)
|
70 |
+
layout = analyze_layout(image_path)
|
71 |
+
structured_output = generate_structured_output(text)
|
72 |
+
machine_readable_output = generate_machine_readable_format(structured_output, format_type=output_format)
|
73 |
+
return machine_readable_output
|
74 |
+
|
75 |
+
# Example usage
|
76 |
+
document_path = "sample_document.png"
|
77 |
+
converted_document = convert_document(document_path, output_format='json')
|
78 |
+
print(converted_document)
|