Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,51 +4,51 @@ from PIL import Image
|
|
4 |
import numpy as np
|
5 |
import torch
|
6 |
|
7 |
-
# Load the primary model (DeepDiveDev/transformodocs-ocr)
|
8 |
processor1 = TrOCRProcessor.from_pretrained("DeepDiveDev/transformodocs-ocr")
|
9 |
model1 = VisionEncoderDecoderModel.from_pretrained("DeepDiveDev/transformodocs-ocr")
|
10 |
|
11 |
-
# Load the fallback model (microsoft/trocr-base-handwritten)
|
12 |
processor2 = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten")
|
13 |
model2 = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten")
|
14 |
|
15 |
-
# Function to extract text
|
16 |
def extract_text(image):
|
17 |
try:
|
18 |
# Convert NumPy array to PIL Image if needed
|
19 |
if isinstance(image, np.ndarray):
|
20 |
-
if len(image.shape) == 2: # Grayscale (H, W)
|
21 |
image = np.stack([image] * 3, axis=-1)
|
22 |
image = Image.fromarray(image)
|
23 |
else:
|
24 |
-
image = Image.open(image).convert("RGB") # Ensure RGB
|
25 |
|
26 |
-
# Maintain aspect ratio while resizing
|
27 |
-
image.thumbnail((
|
28 |
|
29 |
-
# Process with the
|
30 |
pixel_values = processor1(images=image, return_tensors="pt").pixel_values.to(torch.float32)
|
31 |
generated_ids = model1.generate(pixel_values)
|
32 |
extracted_text = processor1.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
33 |
|
34 |
-
# If output
|
35 |
if len(extracted_text.strip()) < 2:
|
36 |
inputs = processor2(images=image, return_tensors="pt").pixel_values.to(torch.float32)
|
37 |
generated_ids = model2.generate(inputs)
|
38 |
extracted_text = processor2.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
39 |
|
40 |
-
return extracted_text
|
41 |
|
42 |
except Exception as e:
|
43 |
return f"Error: {str(e)}"
|
44 |
|
45 |
-
# Gradio
|
46 |
iface = gr.Interface(
|
47 |
fn=extract_text,
|
48 |
-
inputs="
|
49 |
outputs="text",
|
50 |
-
title="
|
51 |
-
description="Upload a handwritten
|
52 |
)
|
53 |
|
54 |
iface.launch()
|
|
|
4 |
import numpy as np
|
5 |
import torch
|
6 |
|
7 |
+
# Load the primary OCR model (DeepDiveDev/transformodocs-ocr)
|
8 |
processor1 = TrOCRProcessor.from_pretrained("DeepDiveDev/transformodocs-ocr")
|
9 |
model1 = VisionEncoderDecoderModel.from_pretrained("DeepDiveDev/transformodocs-ocr")
|
10 |
|
11 |
+
# Load the fallback model (microsoft/trocr-base-handwritten) for handwritten text
|
12 |
processor2 = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten")
|
13 |
model2 = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten")
|
14 |
|
15 |
+
# Function to extract text from handwritten images
|
16 |
def extract_text(image):
|
17 |
try:
|
18 |
# Convert NumPy array to PIL Image if needed
|
19 |
if isinstance(image, np.ndarray):
|
20 |
+
if len(image.shape) == 2: # Grayscale (H, W) -> Convert to RGB
|
21 |
image = np.stack([image] * 3, axis=-1)
|
22 |
image = Image.fromarray(image)
|
23 |
else:
|
24 |
+
image = Image.open(image).convert("RGB") # Ensure RGB format
|
25 |
|
26 |
+
# Maintain aspect ratio while resizing (better for OCR)
|
27 |
+
image.thumbnail((800, 800))
|
28 |
|
29 |
+
# Process image with the first model
|
30 |
pixel_values = processor1(images=image, return_tensors="pt").pixel_values.to(torch.float32)
|
31 |
generated_ids = model1.generate(pixel_values)
|
32 |
extracted_text = processor1.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
33 |
|
34 |
+
# If output is short or incorrect, use the fallback model
|
35 |
if len(extracted_text.strip()) < 2:
|
36 |
inputs = processor2(images=image, return_tensors="pt").pixel_values.to(torch.float32)
|
37 |
generated_ids = model2.generate(inputs)
|
38 |
extracted_text = processor2.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
39 |
|
40 |
+
return extracted_text if extracted_text else "No text detected."
|
41 |
|
42 |
except Exception as e:
|
43 |
return f"Error: {str(e)}"
|
44 |
|
45 |
+
# Gradio UI for OCR Extraction
|
46 |
iface = gr.Interface(
|
47 |
fn=extract_text,
|
48 |
+
inputs=gr.Image(type="pil"),
|
49 |
outputs="text",
|
50 |
+
title="Handwritten OCR Extraction",
|
51 |
+
description="Upload a handwritten image to extract text using AI OCR.",
|
52 |
)
|
53 |
|
54 |
iface.launch()
|