Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!pip install transformers torch torchvision timm easyocr pytesseract gradio datasets huggingface_hub
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
import torch
|
5 |
+
from transformers import TrOCRProcessor, VisionEncoderDecoderModel, pipeline
|
6 |
+
from PIL import Image
|
7 |
+
import requests
|
8 |
+
|
9 |
+
# β
Load TrOCR model (Pretrained on Handwritten OCR)
|
10 |
+
MODEL_NAME = "microsoft/trocr-base-handwritten"
|
11 |
+
|
12 |
+
# β
Check if GPU is available
|
13 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
14 |
+
|
15 |
+
# β
Cache the model to prevent reloading on every request
|
16 |
+
processor = TrOCRProcessor.from_pretrained(MODEL_NAME)
|
17 |
+
model = VisionEncoderDecoderModel.from_pretrained(MODEL_NAME).to(device)
|
18 |
+
|
19 |
+
# β
Function to extract text
|
20 |
+
def extract_text(image):
|
21 |
+
image = Image.open(image).convert("RGB")
|
22 |
+
|
23 |
+
# Convert Image to Model Format
|
24 |
+
pixel_values = processor(images=image, return_tensors="pt").pixel_values.to(device)
|
25 |
+
|
26 |
+
# Generate Text from Model
|
27 |
+
generated_ids = model.generate(pixel_values)
|
28 |
+
extracted_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
29 |
+
|
30 |
+
return extracted_text
|
31 |
+
|
32 |
+
# β
Load NLP Pipeline for Structuring
|
33 |
+
nlp_pipeline = pipeline("ner", model="dslim/bert-base-NER")
|
34 |
+
|
35 |
+
# β
Function to Structure Extracted Text
|
36 |
+
def structure_text(text):
|
37 |
+
ner_results = nlp_pipeline(text)
|
38 |
+
structured_output = []
|
39 |
+
for entity in ner_results:
|
40 |
+
structured_output.append(f"{entity['word']} ({entity['entity']})")
|
41 |
+
return " ".join(structured_output)
|
42 |
+
|
43 |
+
# β
Function to process document (OCR + NLP)
|
44 |
+
def process_document(image):
|
45 |
+
extracted_text = extract_text(image)
|
46 |
+
structured_text = structure_text(extracted_text)
|
47 |
+
return extracted_text, structured_text
|
48 |
+
|
49 |
+
# β
Launch Gradio App
|
50 |
+
iface = gr.Interface(
|
51 |
+
fn=process_document,
|
52 |
+
inputs="image",
|
53 |
+
outputs=["text", "text"],
|
54 |
+
title="TransformoDocs - AI Document Processor",
|
55 |
+
description="Upload a scanned document or handwritten note. The AI will extract and structure the text.",
|
56 |
+
)
|
57 |
+
|
58 |
+
iface.launch(share=True) # β
Use 'share=True' for public link
|