Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,33 +1,33 @@
|
|
1 |
import torch
|
2 |
-
import pytesseract
|
3 |
import cv2
|
4 |
import json
|
5 |
import xml.etree.ElementTree as ET
|
6 |
-
|
7 |
-
from
|
8 |
-
from transformers import GPT2LMHeadModel, GPT2Tokenizer
|
9 |
-
from stable_baselines3 import PPO
|
10 |
|
11 |
-
# Load OCR model
|
12 |
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten")
|
13 |
model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten")
|
14 |
|
|
|
|
|
|
|
|
|
|
|
15 |
def preprocess_image(image_path):
|
16 |
image = cv2.imread(image_path)
|
17 |
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
18 |
return gray
|
19 |
|
|
|
20 |
def extract_text(image_path):
|
21 |
image = preprocess_image(image_path)
|
22 |
-
|
|
|
|
|
23 |
return text
|
24 |
|
25 |
-
|
26 |
-
model = Detectron2LayoutModel("lp://PubLayNet/mask_rcnn_X_101_32x8d_FPN_3x/config")
|
27 |
-
image = cv2.imread(image_path)
|
28 |
-
layout = model.detect(image)
|
29 |
-
return layout
|
30 |
-
|
31 |
def generate_machine_readable_format(text, format_type='json'):
|
32 |
if format_type == 'json':
|
33 |
return json.dumps({"content": text})
|
@@ -38,41 +38,26 @@ def generate_machine_readable_format(text, format_type='json'):
|
|
38 |
return ET.tostring(root, encoding='unicode')
|
39 |
return text
|
40 |
|
41 |
-
#
|
42 |
-
GPT2_model = GPT2LMHeadModel.from_pretrained("gpt2")
|
43 |
-
GPT2_tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
|
44 |
-
|
45 |
def generate_structured_output(text):
|
46 |
inputs = GPT2_tokenizer.encode(text, return_tensors="pt")
|
47 |
outputs = GPT2_model.generate(inputs, max_length=500)
|
48 |
return GPT2_tokenizer.decode(outputs[0])
|
49 |
|
50 |
-
#
|
51 |
-
|
52 |
-
|
53 |
-
self.state = None
|
54 |
-
|
55 |
-
def reset(self):
|
56 |
-
self.state = "start"
|
57 |
-
return self.state
|
58 |
-
|
59 |
-
def step(self, action):
|
60 |
-
reward = 1 if action == "optimize" else -1
|
61 |
-
self.state = "optimized" if action == "optimize" else "start"
|
62 |
-
return self.state, reward, False, {}
|
63 |
-
|
64 |
-
env = DocumentConversionEnv()
|
65 |
-
rl_model = PPO("MlpPolicy", env, verbose=1)
|
66 |
-
rl_model.learn(total_timesteps=1000)
|
67 |
-
|
68 |
-
def convert_document(image_path, output_format='json'):
|
69 |
-
text = extract_text(image_path)
|
70 |
-
layout = analyze_layout(image_path)
|
71 |
structured_output = generate_structured_output(text)
|
72 |
machine_readable_output = generate_machine_readable_format(structured_output, format_type=output_format)
|
73 |
return machine_readable_output
|
74 |
|
75 |
-
#
|
76 |
-
|
77 |
-
|
78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import torch
|
|
|
2 |
import cv2
|
3 |
import json
|
4 |
import xml.etree.ElementTree as ET
|
5 |
+
import gradio as gr
|
6 |
+
from transformers import TrOCRProcessor, VisionEncoderDecoderModel, GPT2LMHeadModel, GPT2Tokenizer
|
|
|
|
|
7 |
|
8 |
+
# Load OCR model (TrOCR)
|
9 |
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten")
|
10 |
model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten")
|
11 |
|
12 |
+
# Load GPT-2 model
|
13 |
+
GPT2_model = GPT2LMHeadModel.from_pretrained("gpt2")
|
14 |
+
GPT2_tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
|
15 |
+
|
16 |
+
# Image preprocessing
|
17 |
def preprocess_image(image_path):
|
18 |
image = cv2.imread(image_path)
|
19 |
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
20 |
return gray
|
21 |
|
22 |
+
# Extract text using TrOCR (instead of Tesseract)
|
23 |
def extract_text(image_path):
|
24 |
image = preprocess_image(image_path)
|
25 |
+
pixel_values = processor(image, return_tensors="pt").pixel_values
|
26 |
+
generated_ids = model.generate(pixel_values)
|
27 |
+
text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
28 |
return text
|
29 |
|
30 |
+
# Generate structured format (JSON/XML)
|
|
|
|
|
|
|
|
|
|
|
31 |
def generate_machine_readable_format(text, format_type='json'):
|
32 |
if format_type == 'json':
|
33 |
return json.dumps({"content": text})
|
|
|
38 |
return ET.tostring(root, encoding='unicode')
|
39 |
return text
|
40 |
|
41 |
+
# GPT-2 for structured output
|
|
|
|
|
|
|
42 |
def generate_structured_output(text):
|
43 |
inputs = GPT2_tokenizer.encode(text, return_tensors="pt")
|
44 |
outputs = GPT2_model.generate(inputs, max_length=500)
|
45 |
return GPT2_tokenizer.decode(outputs[0])
|
46 |
|
47 |
+
# Convert document
|
48 |
+
def convert_document(image, output_format='json'):
|
49 |
+
text = extract_text(image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
structured_output = generate_structured_output(text)
|
51 |
machine_readable_output = generate_machine_readable_format(structured_output, format_type=output_format)
|
52 |
return machine_readable_output
|
53 |
|
54 |
+
# Gradio UI
|
55 |
+
iface = gr.Interface(
|
56 |
+
fn=convert_document,
|
57 |
+
inputs=[gr.Image(type="filepath"), gr.Radio(["json", "xml"], label="Output Format")],
|
58 |
+
outputs="text",
|
59 |
+
title="Document OCR and Conversion",
|
60 |
+
description="Extracts text from images and converts it into structured JSON/XML format."
|
61 |
+
)
|
62 |
+
|
63 |
+
iface.launch()
|