import torch import pytesseract import cv2 import json import xml.etree.ElementTree as ET from transformers import TrOCRProcessor, VisionEncoderDecoderModel from layoutparser import Detectron2LayoutModel from transformers import GPT2LMHeadModel, GPT2Tokenizer from stable_baselines3 import PPO # Load OCR model processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten") model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten") def preprocess_image(image_path): image = cv2.imread(image_path) gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) return gray def extract_text(image_path): image = preprocess_image(image_path) text = pytesseract.image_to_string(image) return text def analyze_layout(image_path): model = Detectron2LayoutModel("lp://PubLayNet/mask_rcnn_X_101_32x8d_FPN_3x/config") image = cv2.imread(image_path) layout = model.detect(image) return layout def generate_machine_readable_format(text, format_type='json'): if format_type == 'json': return json.dumps({"content": text}) elif format_type == 'xml': root = ET.Element("Document") content = ET.SubElement(root, "Content") content.text = text return ET.tostring(root, encoding='unicode') return text # Generative AI Model GPT2_model = GPT2LMHeadModel.from_pretrained("gpt2") GPT2_tokenizer = GPT2Tokenizer.from_pretrained("gpt2") def generate_structured_output(text): inputs = GPT2_tokenizer.encode(text, return_tensors="pt") outputs = GPT2_model.generate(inputs, max_length=500) return GPT2_tokenizer.decode(outputs[0]) # Reinforcement Learning for Optimization class DocumentConversionEnv: def __init__(self): self.state = None def reset(self): self.state = "start" return self.state def step(self, action): reward = 1 if action == "optimize" else -1 self.state = "optimized" if action == "optimize" else "start" return self.state, reward, False, {} env = DocumentConversionEnv() rl_model = PPO("MlpPolicy", env, verbose=1) rl_model.learn(total_timesteps=1000) def convert_document(image_path, output_format='json'): text = extract_text(image_path) layout = analyze_layout(image_path) structured_output = generate_structured_output(text) machine_readable_output = generate_machine_readable_format(structured_output, format_type=output_format) return machine_readable_output # Example usage document_path = "sample_document.png" converted_document = convert_document(document_path, output_format='json') print(converted_document)