File size: 5,908 Bytes
6da6215
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import math
import time

import cv2
import numpy as np
import paddle
import paddle.nn.functional as F
from paddleseg import utils
from paddleseg.core import infer
from paddleseg.utils import logger, progbar, TimeAverager

from matting.utils import mkdir


def partition_list(arr, m):
    """split the list 'arr' into m pieces"""
    n = int(math.ceil(len(arr) / float(m)))
    return [arr[i:i + n] for i in range(0, len(arr), n)]


def save_alpha_pred(alpha, path, trimap=None):
    """
    The value of alpha is range [0, 1], shape should be [h,w]
    """
    dirname = os.path.dirname(path)
    if not os.path.exists(dirname):
        os.makedirs(dirname)

    trimap = cv2.imread(trimap, 0)
    alpha[trimap == 0] = 0
    alpha[trimap == 255] = 255
    alpha = (alpha).astype('uint8')
    cv2.imwrite(path, alpha)


def reverse_transform(alpha, trans_info):
    """recover pred to origin shape"""
    for item in trans_info[::-1]:
        if item[0] == 'resize':
            h, w = item[1][0], item[1][1]
            alpha = F.interpolate(alpha, [h, w], mode='bilinear')
        elif item[0] == 'padding':
            h, w = item[1][0], item[1][1]
            alpha = alpha[:, :, 0:h, 0:w]
        else:
            raise Exception("Unexpected info '{}' in im_info".format(item[0]))
    return alpha


def preprocess(img, transforms, trimap=None):
    data = {}
    data['img'] = img
    if trimap is not None:
        data['trimap'] = trimap
        data['gt_fields'] = ['trimap']
    data['trans_info'] = []
    data = transforms(data)
    data['img'] = paddle.to_tensor(data['img'])
    data['img'] = data['img'].unsqueeze(0)
    if trimap is not None:
        data['trimap'] = paddle.to_tensor(data['trimap'])
        data['trimap'] = data['trimap'].unsqueeze((0, 1))

    return data


def predict(model,
            model_path,
            transforms,
            image_list,
            image_dir=None,
            trimap_list=None,
            save_dir='output'):
    """
    predict and visualize the image_list.

    Args:
        model (nn.Layer): Used to predict for input image.
        model_path (str): The path of pretrained model.
        transforms (transforms.Compose): Preprocess for input image.
        image_list (list): A list of image path to be predicted.
        image_dir (str, optional): The root directory of the images predicted. Default: None.
        trimap_list (list, optional): A list of trimap of image_list. Default: None.
        save_dir (str, optional): The directory to save the visualized results. Default: 'output'.
    """
    utils.utils.load_entire_model(model, model_path)
    model.eval()
    nranks = paddle.distributed.get_world_size()
    local_rank = paddle.distributed.get_rank()
    if nranks > 1:
        img_lists = partition_list(image_list, nranks)
        trimap_lists = partition_list(
            trimap_list, nranks) if trimap_list is not None else None
    else:
        img_lists = [image_list]
        trimap_lists = [trimap_list] if trimap_list is not None else None

    logger.info("Start to predict...")
    progbar_pred = progbar.Progbar(target=len(img_lists[0]), verbose=1)
    preprocess_cost_averager = TimeAverager()
    infer_cost_averager = TimeAverager()
    postprocess_cost_averager = TimeAverager()
    batch_start = time.time()
    with paddle.no_grad():
        for i, im_path in enumerate(img_lists[local_rank]):
            preprocess_start = time.time()
            trimap = trimap_lists[local_rank][
                i] if trimap_list is not None else None
            data = preprocess(img=im_path, transforms=transforms, trimap=trimap)
            preprocess_cost_averager.record(time.time() - preprocess_start)

            infer_start = time.time()
            alpha_pred = model(data)
            infer_cost_averager.record(time.time() - infer_start)

            postprocess_start = time.time()
            alpha_pred = reverse_transform(alpha_pred, data['trans_info'])
            alpha_pred = (alpha_pred.numpy()).squeeze()
            alpha_pred = (alpha_pred * 255).astype('uint8')

            # get the saved name
            # if image_dir is not None:
            #     im_file = im_path.replace(image_dir, '')
            # else:
            #     im_file = os.path.basename(im_path)
            # if im_file[0] == '/' or im_file[0] == '\\':
            #     im_file = im_file[1:]

            # save_path = os.path.join(save_dir, im_file)
            # mkdir(save_path)
            # save_alpha_pred(alpha_pred, save_path, trimap=trimap)

            postprocess_cost_averager.record(time.time() - postprocess_start)

            preprocess_cost = preprocess_cost_averager.get_average()
            infer_cost = infer_cost_averager.get_average()
            postprocess_cost = postprocess_cost_averager.get_average()
            if local_rank == 0:
                progbar_pred.update(i + 1,
                                    [('preprocess_cost', preprocess_cost),
                                     ('infer_cost cost', infer_cost),
                                     ('postprocess_cost', postprocess_cost)])

            preprocess_cost_averager.reset()
            infer_cost_averager.reset()
            postprocess_cost_averager.reset()
            
    return alpha_pred