Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import joblib
|
5 |
+
import onnxruntime as ort
|
6 |
+
|
7 |
+
# Load the ONNX model and scaler outside the function for efficiency
|
8 |
+
try:
|
9 |
+
ort_session = ort.InferenceSession("hiv_model.onnx")
|
10 |
+
scaler = joblib.load("hiv_scaler.pkl")
|
11 |
+
feature_names = ['Age', 'Sex', 'CD4+ T-cell count', 'Viral load', 'WBC count', 'Hemoglobin', 'Platelet count'] # Match your training data
|
12 |
+
|
13 |
+
model_loaded = True
|
14 |
+
scaler_loaded = True
|
15 |
+
except Exception as e:
|
16 |
+
print(f"Error loading model or scaler: {e}")
|
17 |
+
model_loaded = False
|
18 |
+
scaler_loaded = False
|
19 |
+
ort_session = None
|
20 |
+
scaler = None
|
21 |
+
feature_names = [] # Set to empty to avoid errors later
|
22 |
+
|
23 |
+
def predict_risk(age, sex, cd4_count, viral_load, wbc_count, hemoglobin, platelet_count):
|
24 |
+
"""
|
25 |
+
Predicts HIV risk probability based on input features.
|
26 |
+
"""
|
27 |
+
if not model_loaded or not scaler_loaded:
|
28 |
+
return "Model or scaler not loaded. Please ensure 'hiv_model.onnx' and 'hiv_scaler.pkl' are in the same directory."
|
29 |
+
|
30 |
+
try:
|
31 |
+
# 1. Create a DataFrame
|
32 |
+
input_data = {
|
33 |
+
'Age': [age],
|
34 |
+
'Sex': [0 if sex == "Female" else 1], # Encode Sex
|
35 |
+
'CD4+ T-cell count': [cd4_count],
|
36 |
+
'Viral load': [viral_load],
|
37 |
+
'WBC count': [wbc_count],
|
38 |
+
'Hemoglobin': [hemoglobin],
|
39 |
+
'Platelet count': [platelet_count]
|
40 |
+
}
|
41 |
+
input_df = pd.DataFrame(input_data)
|
42 |
+
|
43 |
+
# 2. Standardize the data
|
44 |
+
scaled_values = scaler.transform(input_df[feature_names])
|
45 |
+
scaled_df = pd.DataFrame(scaled_values, columns=feature_names)
|
46 |
+
|
47 |
+
# 3. ONNX Prediction
|
48 |
+
input_array = scaled_df[feature_names].values.astype(np.float32) # Enforce float32
|
49 |
+
ort_inputs = {ort_session.get_inputs()[0].name: input_array}
|
50 |
+
ort_outs = ort_session.run(None, ort_inputs)
|
51 |
+
|
52 |
+
# 4. Process Output
|
53 |
+
probabilities = ort_outs[0][0]
|
54 |
+
risk_probability = probabilities[1] # Probability of High Risk
|
55 |
+
|
56 |
+
return f"High Risk Probability: {risk_probability:.4f}"
|
57 |
+
|
58 |
+
except Exception as e:
|
59 |
+
return f"An error occurred during prediction: {e}"
|
60 |
+
|
61 |
+
|
62 |
+
# Define Gradio inputs
|
63 |
+
age_input = gr.Number(label="Age", value=30)
|
64 |
+
sex_input = gr.Radio(["Female", "Male"], label="Sex", value="Female")
|
65 |
+
cd4_input = gr.Number(label="CD4+ T-cell count", value=500)
|
66 |
+
viral_input = gr.Number(label="Viral load", value=10000)
|
67 |
+
wbc_input = gr.Number(label="WBC count", value=7000)
|
68 |
+
hemoglobin_input = gr.Number(label="Hemoglobin", value=14.0)
|
69 |
+
platelet_input = gr.Number(label="Platelet count", value=250000)
|
70 |
+
|
71 |
+
# Create Gradio interface
|
72 |
+
iface = gr.Interface(
|
73 |
+
fn=predict_risk,
|
74 |
+
inputs=[age_input, sex_input, cd4_input, viral_input, wbc_input, hemoglobin_input, platelet_input],
|
75 |
+
outputs="text",
|
76 |
+
title="Sentinel-P1: HIV Risk Prediction Demo",
|
77 |
+
description="Enter blood report values to estimate HIV risk. This is a demonstration model and should not be used for medical advice.",
|
78 |
+
)
|
79 |
+
|
80 |
+
iface.launch()
|