File size: 1,294 Bytes
7206ed3
 
 
 
 
6db6a87
63056c5
ea66b57
7206ed3
13575f0
 
6db6a87
0da9dca
 
 
 
56f79a3
 
 
 
 
 
0da9dca
 
 
 
 
 
 
 
 
 
56f79a3
36e49ec
56f79a3
 
0da9dca
13575f0
 
7206ed3
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import os
import yaml
import numpy as np
from matplotlib import cm
import gradio as gr
import deeplabcut
import dlclibrary
import transformers

from PIL import Image
import requests

from viz_utils import save_results_as_json, draw_keypoints_on_image, draw_bbox_w_text, save_results_only_dlc
from detection_utils import predict_md, crop_animal_detections
from ui_utils import gradio_inputs_for_MD_DLC, gradio_outputs_for_MD_DLC, gradio_description_and_examples

from deeplabcut.utils import auxiliaryfunctions
from dlclibrary.dlcmodelzoo.modelzoo_download import (
    download_huggingface_model,
    MODELOPTIONS,
)

# megadetector and dlc model look up
MD_models_dict = {'md_v5a': "MD_models/md_v5a.0.0.pt", # 
                  'md_v5b': "MD_models/md_v5b.0.0.pt"}

# DLC models target  dirs
DLC_models_dict = {'superanimal_topviewmouse': "DLC_models/sa-tvm",
                   'superanimal_quadreped': "DLC_models/sa-q",
                    'full_human': "DLC_models/DLC_human_dancing/"}

# download the SuperAnimal models:
model = 'superanimal_topviewmouse'
train_dir = 'DLC_models/sa-tvm'
download_huggingface_model(model, train_dir)

# grab demo data cooco cat:
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)