File size: 1,294 Bytes
7206ed3 6db6a87 63056c5 ea66b57 7206ed3 13575f0 6db6a87 0da9dca 56f79a3 0da9dca 56f79a3 36e49ec 56f79a3 0da9dca 13575f0 7206ed3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
import os
import yaml
import numpy as np
from matplotlib import cm
import gradio as gr
import deeplabcut
import dlclibrary
import transformers
from PIL import Image
import requests
from viz_utils import save_results_as_json, draw_keypoints_on_image, draw_bbox_w_text, save_results_only_dlc
from detection_utils import predict_md, crop_animal_detections
from ui_utils import gradio_inputs_for_MD_DLC, gradio_outputs_for_MD_DLC, gradio_description_and_examples
from deeplabcut.utils import auxiliaryfunctions
from dlclibrary.dlcmodelzoo.modelzoo_download import (
download_huggingface_model,
MODELOPTIONS,
)
# megadetector and dlc model look up
MD_models_dict = {'md_v5a': "MD_models/md_v5a.0.0.pt", #
'md_v5b': "MD_models/md_v5b.0.0.pt"}
# DLC models target dirs
DLC_models_dict = {'superanimal_topviewmouse': "DLC_models/sa-tvm",
'superanimal_quadreped': "DLC_models/sa-q",
'full_human': "DLC_models/DLC_human_dancing/"}
# download the SuperAnimal models:
model = 'superanimal_topviewmouse'
train_dir = 'DLC_models/sa-tvm'
download_huggingface_model(model, train_dir)
# grab demo data cooco cat:
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
|