Update detection_utils.py
Browse files- detection_utils.py +1 -28
detection_utils.py
CHANGED
@@ -4,7 +4,6 @@ import gradio as gr
|
|
4 |
from matplotlib import cm
|
5 |
import torch
|
6 |
import torchvision
|
7 |
-
from dlclive import DLCLive, Processor
|
8 |
import matplotlib
|
9 |
from PIL import Image, ImageColor, ImageFont, ImageDraw
|
10 |
import numpy as np
|
@@ -87,30 +86,4 @@ def crop_animal_detections(img_in,
|
|
87 |
# add to list
|
88 |
list_np_animal_crops.append(crop_np)
|
89 |
|
90 |
-
return list_np_animal_crops
|
91 |
-
|
92 |
-
##########################################
|
93 |
-
def predict_dlc(list_np_crops,
|
94 |
-
kpts_likelihood_th,
|
95 |
-
DLCmodel,
|
96 |
-
dlc_proc):
|
97 |
-
|
98 |
-
# run dlc thru list of crops
|
99 |
-
dlc_live = DLCLive(DLCmodel, processor=dlc_proc)
|
100 |
-
dlc_live.init_inference(list_np_crops[0])
|
101 |
-
|
102 |
-
list_kpts_per_crop = []
|
103 |
-
all_kypts = []
|
104 |
-
np_aux = np.empty((1,3)) # can I avoid hardcoding here?
|
105 |
-
for crop in list_np_crops:
|
106 |
-
# scale crop here?
|
107 |
-
keypts_xyp = dlc_live.get_pose(crop) # third column is llk!
|
108 |
-
# set kpts below threhsold to nan
|
109 |
-
|
110 |
-
#pdb.set_trace()
|
111 |
-
keypts_xyp[keypts_xyp[:,-1] < kpts_likelihood_th,:] = np_aux.fill(np.nan)
|
112 |
-
# add kpts of this crop to list
|
113 |
-
list_kpts_per_crop.append(keypts_xyp)
|
114 |
-
all_kypts.append(keypts_xyp)
|
115 |
-
|
116 |
-
return list_kpts_per_crop
|
|
|
4 |
from matplotlib import cm
|
5 |
import torch
|
6 |
import torchvision
|
|
|
7 |
import matplotlib
|
8 |
from PIL import Image, ImageColor, ImageFont, ImageDraw
|
9 |
import numpy as np
|
|
|
86 |
# add to list
|
87 |
list_np_animal_crops.append(crop_np)
|
88 |
|
89 |
+
return list_np_animal_crops
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|