import deeplabcut from tkinter import W import gradio as gr import numpy as np from dlclive import DLCLive, Processor ########################################## def predict_dlc(list_np_crops, kpts_likelihood_th, DLCmodel, dlc_proc): # run dlc thru list of crops dlc_live = DLCLive("superanimal_quadruped", processor=dlc_proc) dlc_live.init_inference(list_np_crops[0]) list_kpts_per_crop = [] all_kypts = [] np_aux = np.empty((1,3)) # can I avoid hardcoding here? for crop in list_np_crops: # scale crop here? keypts_xyp = dlc_live.get_pose(crop) # third column is llk! # set kpts below threhsold to nan #pdb.set_trace() keypts_xyp[keypts_xyp[:,-1] < kpts_likelihood_th,:] = np_aux.fill(np.nan) # add kpts of this crop to list list_kpts_per_crop.append(keypts_xyp) all_kypts.append(keypts_xyp) return list_kpts_per_crop # WIP error ''' File "/home/user/app/dlc_utils.py", line 15, in predict_dlc dlc_live = DLCLive(DLCmodel, processor=dlc_proc) File "/home/user/.local/lib/python3.8/site-packages/dlclive/dlclive.py", line 155, in __init__ self.read_config() File "/home/user/.local/lib/python3.8/site-packages/dlclive/dlclive.py", line 166, in read_config cfg_path = Path(self.path).resolve() / "pose_cfg.yaml" File "/usr/local/lib/python3.8/pathlib.py", line 1041, in __new__ self = cls._from_parts(args, init=False) File "/usr/local/lib/python3.8/pathlib.py", line 682, in _from_parts drv, root, parts = self._parse_args(args) File "/usr/local/lib/python3.8/pathlib.py", line 666, in _parse_args a = os.fspath(a) TypeError: expected str, bytes or os.PathLike object, not NoneType '''