Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
|
| 3 |
+
import gradio as gr
|
| 4 |
+
import operator
|
| 5 |
+
import torch
|
| 6 |
+
from transformers import BertTokenizer, BertForMaskedLM
|
| 7 |
+
|
| 8 |
+
# 使用私有模型和分詞器
|
| 9 |
+
model_name_or_path = "DeepLearning101/Corrector101zhTW"
|
| 10 |
+
auth_token = "Corrector101zhTW" # 換成您的 Hugging Face API token
|
| 11 |
+
|
| 12 |
+
tokenizer = BertTokenizer.from_pretrained(model_name_or_path, use_auth_token=auth_token)
|
| 13 |
+
model = BertForMaskedLM.from_pretrained(model_name_or_path, use_auth_token=auth_token)
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
def ai_text(text):
|
| 17 |
+
with torch.no_grad():
|
| 18 |
+
outputs = model(**tokenizer([text], padding=True, return_tensors='pt'))
|
| 19 |
+
|
| 20 |
+
def to_highlight(corrected_sent, errs):
|
| 21 |
+
output = [{"entity": "糾錯", "word": err[1], "start": err[2], "end": err[3]} for i, err in
|
| 22 |
+
enumerate(errs)]
|
| 23 |
+
return {"text": corrected_sent, "entities": output}
|
| 24 |
+
|
| 25 |
+
def get_errors(corrected_text, origin_text):
|
| 26 |
+
sub_details = []
|
| 27 |
+
for i, ori_char in enumerate(origin_text):
|
| 28 |
+
if ori_char in [' ', '“', '”', '‘', '’', '琊', '\n', '…', '—', '擤']:
|
| 29 |
+
# add unk word
|
| 30 |
+
corrected_text = corrected_text[:i] + ori_char + corrected_text[i:]
|
| 31 |
+
continue
|
| 32 |
+
if i >= len(corrected_text):
|
| 33 |
+
continue
|
| 34 |
+
if ori_char != corrected_text[i]:
|
| 35 |
+
if ori_char.lower() == corrected_text[i]:
|
| 36 |
+
# pass english upper char
|
| 37 |
+
corrected_text = corrected_text[:i] + ori_char + corrected_text[i + 1:]
|
| 38 |
+
continue
|
| 39 |
+
sub_details.append((ori_char, corrected_text[i], i, i + 1))
|
| 40 |
+
sub_details = sorted(sub_details, key=operator.itemgetter(2))
|
| 41 |
+
return corrected_text, sub_details
|
| 42 |
+
|
| 43 |
+
_text = tokenizer.decode(torch.argmax(outputs.logits[0], dim=-1), skip_special_tokens=True).replace(' ', '')
|
| 44 |
+
corrected_text = _text[:len(text)]
|
| 45 |
+
corrected_text, details = get_errors(corrected_text, text)
|
| 46 |
+
print(text, ' => ', corrected_text, details)
|
| 47 |
+
return corrected_text + ' ' + str(details)
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
if __name__ == '__main__':
|
| 51 |
+
|
| 52 |
+
examples = [
|
| 53 |
+
['你究輸入利的手機門號跟生分證就可以了。'],
|
| 54 |
+
['這裡是客服中新,很高性為您服物,請問金天有什麼須要幫忙'],
|
| 55 |
+
['因為我們這邊是按天術比例計蒜給您的,其實不會有態大的穎響。也就是您用前面的資非的廢率來做計算'],
|
| 56 |
+
['我來看以下,他的時價是多少?起實您就可以直皆就不用到門事'],
|
| 57 |
+
['因為你現在月富是六九九嘛,我幫擬減衣百塊,兒且也不會江速'],
|
| 58 |
+
]
|
| 59 |
+
|
| 60 |
+
inputs=[gr.Textbox(lines=2, label="欲校正的文字")],
|
| 61 |
+
outputs=[gr.Textbox(lines=2, label="修正後的文字")],
|
| 62 |
+
gr.Interface(
|
| 63 |
+
inputs='text',
|
| 64 |
+
outputs='text',
|
| 65 |
+
title="客服ASR文本AI糾錯系統",
|
| 66 |
+
description="""
|
| 67 |
+
<a href="https://www.twman.org" target='_blank'>TonTon Huang Ph.D. @ 2024/04 </a><br>
|
| 68 |
+
輸入ASR文本,糾正同音字/詞錯誤<br>
|
| 69 |
+
Masked Language Model (MLM) as correction BERT
|
| 70 |
+
""", examples=examples
|
| 71 |
+
).launch()
|