File size: 4,768 Bytes
79f3857
83bfed1
2eff9bd
 
79f3857
 
83bfed1
 
 
 
 
 
79f3857
2eff9bd
83bfed1
 
 
 
 
 
 
 
583bd83
2eff9bd
79f3857
 
 
 
 
 
 
 
 
 
2eff9bd
79f3857
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83bfed1
79f3857
 
 
 
 
 
 
2eff9bd
 
79f3857
2eff9bd
83bfed1
 
 
2eff9bd
79f3857
2eff9bd
 
79f3857
 
83bfed1
1964be5
0f09753
5936530
f33309a
83bfed1
 
1964be5
83bfed1
 
 
 
 
 
 
 
79f3857
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83bfed1
583bd83
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import os
import gradio as gr
import aiohttp
import asyncio
import json
from functools import lru_cache

LLM_API = os.environ.get("LLM_API")
LLM_URL = os.environ.get("LLM_URL")

USER_ID = "HuggingFace Space"  # Placeholder user ID

@lru_cache(maxsize=32)
async def send_chat_message(LLM_URL, LLM_API, user_input):
    payload = {
        "inputs": {},
        "query": user_input,
        "response_mode": "streaming",
        "conversation_id": "",
        "user": USER_ID,
    }
    print("Sending chat message payload:", payload)  # Debug information

    async with aiohttp.ClientSession() as session:
        try:
            async with session.post(
                url=f"{LLM_URL}/chat-messages",
                headers={"Authorization": f"Bearer {LLM_API}"},
                json=payload,
                timeout=aiohttp.ClientTimeout(total=60)
            ) as response:
                if response.status != 200:
                    print(f"Error: {response.status}")
                    return f"Error: {response.status}"

                full_response = []
                async for line in response.content:
                    line = line.decode('utf-8').strip()
                    if not line:
                        continue
                    if "data: " not in line:
                        continue
                    try:
                        print("Received line:", line)  # Debug information
                        data = json.loads(line.split("data: ")[1])
                        if "answer" in data:
                            full_response.append(data["answer"])
                    except (IndexError, json.JSONDecodeError) as e:
                        print(f"Error parsing line: {line}, error: {e}")  # Debug information
                        continue

                if full_response:
                    return ''.join(full_response).strip()
                else:
                    return "Error: No response found in the response"
        except Exception as e:
            print(f"Exception: {e}")
            return f"Exception: {e}"

async def handle_input(user_input):
    print(f"Handling input: {user_input}")
    chat_response = await send_chat_message(LLM_URL, LLM_API, user_input)
    print("Chat response:", chat_response)  # Debug information
    return chat_response

def run_sync(user_input):
    print(f"Running sync with input: {user_input}")
    return asyncio.run(handle_input(user_input))

# 定義 Gradio 界面
user_input = gr.Textbox(label='歡迎問我加密貨幣交易所的各種疑難雜症', placeholder='在此輸入問題...')
examples = [
    ["MAX 帳號刪除關戶後,又重新註冊 MAX 後要怎辦?"],
    ["手機APP怎麼操作掛單交易?"],
    ["USDT 怎樣換新台幣?"],
    ["新台幣入金要怎操作"]
]

TITLE = """<h1 align="center">Large Language Model (LLM) Playground 💬 <a href='https://support.maicoin.com/zh-TW/support/home' target='_blank'>Cryptocurrency Exchange FAQ</a></h1>"""
SUBTITLE = """<h2 align="center"><a href='https://www.twman.org' target='_blank'>TonTon Huang Ph.D. @ 2024/06 </a><br></h2>"""
LINKS = """<a href='https://blog.twman.org/2021/04/ASR.html' target='_blank'>那些語音處理 (Speech Processing) 踩的坑</a> | <a href='https://blog.twman.org/2021/04/NLP.html' target='_blank'>那些自然語言處理 (Natural Language Processing, NLP) 踩的坑</a> | <a href='https://blog.twman.org/2024/02/asr-tts.html' target='_blank'>那些ASR和TTS可能會踩的坑</a> | <a href='https://blog.twman.org/2024/02/LLM.html' target='_blank'>那些大模型開發會踩的坑</a> | <a href='https://blog.twman.org/2023/04/GPT.html' target='_blank'>什麼是大語言模型,它是什麼?想要嗎?</a><br>
<a href='https://blog.twman.org/2023/07/wsl.html' target='_blank'>用PaddleOCR的PPOCRLabel來微調醫療診斷書和收據</a> | <a href='https://blog.twman.org/2023/07/HugIE.html' target='_blank'>基於機器閱讀理解和指令微調的統一信息抽取框架之診斷書醫囑資訊擷取分析</a><br>"""

with gr.Blocks() as iface:
    gr.HTML(TITLE)
    gr.HTML(SUBTITLE)
    gr.HTML(LINKS)
    with gr.Row():
        chatbot = gr.Chatbot()
    with gr.Row():
        user_input = gr.Textbox(label='輸入您的問題', placeholder="在此輸入問題...")
        submit_button = gr.Button("送出")
    gr.Examples(examples=examples, inputs=user_input)
    with gr.Row():
        feedback_output = gr.Textbox(label='反饋結果', interactive=False)

    def chat(user_input, history):
        response = run_sync(user_input)
        history.append((user_input, response))
        return history, history

    submit_button.click(fn=chat, inputs=[user_input, chatbot], outputs=[chatbot, chatbot])

iface.launch()