File size: 3,625 Bytes
83bfed1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
583bd83
 
 
 
83bfed1
e9d86b2
83bfed1
 
 
 
583bd83
83bfed1
e9d86b2
 
583bd83
 
83bfed1
 
 
 
e9d86b2
 
83bfed1
 
 
 
 
 
 
 
 
 
 
1964be5
0f09753
5936530
f33309a
83bfed1
 
1964be5
83bfed1
 
 
 
 
 
 
 
 
 
 
 
1964be5
83bfed1
 
 
583bd83
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import gradio as gr
import requests
import json, os

LLM_API = os.environ.get("LLM_API")
LLM_URL = os.environ.get("LLM_URL")

USER_ID = "HuggingFace Space"  # Placeholder user ID

def send_chat_message(LLM_URL, LLM_API, user_input):
    payload = {
        "inputs": {},
        "query": user_input,
        "response_mode": "streaming",
        "conversation_id": "",
        "user": USER_ID,
    }
    print("Sending chat message payload:", payload)  # Debug information
    response = requests.post(
        url=f"{LLM_URL}/chat-messages",
        headers={"Authorization": f"Bearer {LLM_API}"},
        json=payload,
        stream=True  # Enable streaming
    )
    if response.status_code != 200:
        print(f"Error: {response.status_code}")
        return f"Error: {response.status_code}"

    # Handle the stream of events
    full_response = []
    try:
        for line in response.iter_lines(decode_unicode=True):
            if line:
                try:
                    print("Received line:", line)  # Debug information
                    data = json.loads(line.split("data: ")[1])
                    if "answer" in data:
                        full_response.append(data["answer"])
                except (IndexError, json.JSONDecodeError) as e:
                    print(f"Error parsing line: {line}, error: {e}")  # Debug information
                    continue
    except json.JSONDecodeError:
        return "Error: Invalid JSON response"
    
    if full_response:
        return ''.join(full_response).strip()
    else:
        return "Error: No thought found in the response"

def handle_input(user_input):
    chat_response = send_chat_message(LLM_URL, LLM_API, user_input)
    print("Chat response:", chat_response)  # Debug information
    return chat_response

# Define Gradio interface
user_input = gr.Textbox(label='歡迎問我加密貨幣交易所的各種疑難雜症')
examples = [
    ["MAX 帳號刪除關戶後,又重新註冊 MAX 後要怎辦?"],
    ["手機APP怎麼操作掛單交易?"],
    ["USDT 怎樣換新台幣?"],
    ["新台幣入金要怎操作"]
]

TITLE = """<h1 align="center">Large Language Model (LLM) Playground 💬 <a href='https://support.maicoin.com/zh-TW/support/home' target='_blank'>Cryptocurrency Exchange FAQ</a></h1>"""
SUBTITLE = """<h2 align="center"><a href='https://www.twman.org' target='_blank'>TonTon Huang Ph.D. @ 2024/06 </a><br></h2>"""
LINKS = """<a href='https://blog.twman.org/2021/04/ASR.html' target='_blank'>那些語音處理 (Speech Processing) 踩的坑</a> | <a href='https://blog.twman.org/2021/04/NLP.html' target='_blank'>那些自然語言處理 (Natural Language Processing, NLP) 踩的坑</a> | <a href='https://blog.twman.org/2024/02/asr-tts.html' target='_blank'>那些ASR和TTS可能會踩的坑</a> | <a href='https://blog.twman.org/2024/02/LLM.html' target='_blank'>那些大模型開發會踩的坑</a> | <a href='https://blog.twman.org/2023/04/GPT.html' target='_blank'>什麼是大語言模型,它是什麼?想要嗎?</a><br>
<a href='https://blog.twman.org/2023/07/wsl.html' target='_blank'>用PaddleOCR的PPOCRLabel來微調醫療診斷書和收據</a> | <a href='https://blog.twman.org/2023/07/HugIE.html' target='_blank'>基於機器閱讀理解和指令微調的統一信息抽取框架之診斷書醫囑資訊擷取分析</a><br>"""

with gr.Blocks() as iface:
    gr.HTML(TITLE)
    gr.HTML(SUBTITLE)
    gr.HTML(LINKS)
    gr.Interface(
        fn=handle_input,
        inputs=user_input,
        outputs="text",
        examples=examples,
        allow_flagging="never"
    )

iface.launch()