File size: 10,434 Bytes
79f3857 83bfed1 2eff9bd 79f3857 4125888 83bfed1 aa64435 4125888 83bfed1 4125888 83bfed1 79f3857 2eff9bd 83bfed1 583bd83 2eff9bd 79f3857 2eff9bd 79f3857 83bfed1 79f3857 2eff9bd 79f3857 2eff9bd 83bfed1 dad0a97 2eff9bd c9c08b8 4125888 64ecf55 4125888 c9c08b8 4125888 dad0a97 4125888 64ecf55 4125888 64ecf55 4125888 ea2177c 71ad8e5 ea2177c 635d3e2 cf76de1 ea2177c 4125888 83bfed1 1964be5 0f09753 5936530 f33309a 83bfed1 79f3857 4125888 79f3857 b5f94b7 4125888 79f3857 4125888 c9c08b8 1ace023 ccce7ef c9c08b8 4125888 79f3857 b5f94b7 4125888 b5f94b7 79f3857 4125888 79f3857 83bfed1 1ace023 c9c08b8 4125888 dad0a97 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
import os
import gradio as gr
import aiohttp
import asyncio
import json
from functools import lru_cache
from datasets import Dataset, DatasetDict, load_dataset
from huggingface_hub import HfFolder
import subprocess
def upgrade_pip():
try:
subprocess.check_call([os.sys.executable, "-m", "pip", "install", "--upgrade", "pip"])
print("pip 升級成功")
except subprocess.CalledProcessError:
print("pip 升級失敗")
# 呼叫升級函數
upgrade_pip()
# 從環境變量中獲取 Hugging Face API 令牌和其他配置
HF_API_TOKEN = os.environ.get("Feedback_API_TOKEN")
LLM_API = os.environ.get("LLM_API")
LLM_URL = os.environ.get("LLM_URL")
USER_ID = "HuggingFace Space"
DATASET_NAME = os.environ.get("DATASET_NAME")
# 確保令牌不為空
if HF_API_TOKEN is None:
raise ValueError("HF_API_TOKEN 環境變量未設置。請在 Hugging Face Space 的設置中添加該環境變量。")
# 設置 Hugging Face API 令牌
HfFolder.save_token(HF_API_TOKEN)
# 定義數據集特徵
features = {
"user_input": "string",
"response": "string",
"feedback_type": "string",
"improvement": "string"
}
# 加載或創建數據集
try:
dataset = load_dataset(DATASET_NAME)
except:
dataset = DatasetDict({
"feedback": Dataset.from_dict({
"user_input": [],
"response": [],
"feedback_type": [],
"improvement": []
})
})
@lru_cache(maxsize=32)
async def send_chat_message(LLM_URL, LLM_API, user_input):
payload = {
"inputs": {},
"query": user_input,
"response_mode": "streaming",
"conversation_id": "",
"user": USER_ID,
}
print("Sending chat message payload:", payload) # Debug information
async with aiohttp.ClientSession() as session:
try:
async with session.post(
url=f"{LLM_URL}/chat-messages",
headers={"Authorization": f"Bearer {LLM_API}"},
json=payload,
timeout=aiohttp.ClientTimeout(total=60)
) as response:
if response.status != 200:
print(f"Error: {response.status}")
return f"Error: {response.status}"
full_response = []
async for line in response.content:
line = line.decode('utf-8').strip()
if not line:
continue
if "data: " not in line:
continue
try:
print("Received line:", line) # Debug information
data = json.loads(line.split("data: ")[1])
if "answer" in data:
full_response.append(data["answer"])
except (IndexError, json.JSONDecodeError) as e:
print(f"Error parsing line: {line}, error: {e}") # Debug information
continue
if full_response:
return ''.join(full_response).strip()
else:
return "Error: No response found in the response"
except Exception as e:
print(f"Exception: {e}")
return f"Exception: {e}"
async def handle_input(user_input):
print(f"Handling input: {user_input}")
chat_response = await send_chat_message(LLM_URL, LLM_API, user_input)
print("Chat response:", chat_response) # Debug information
return chat_response
def run_sync(func, *args):
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
result = loop.run_until_complete(func(*args))
loop.close()
return result
def save_feedback(user_input, response, feedback_type, improvement):
feedback = {
"user_input": user_input,
"response": response,
"feedback_type": feedback_type,
"improvement": improvement
}
print(f"Saving feedback: {feedback}")
# Append to the dataset
new_data = {
"user_input": [user_input],
"response": [response],
"feedback_type": [feedback_type],
"improvement": [improvement]
}
global dataset
dataset["feedback"] = Dataset.from_dict({
"user_input": dataset["feedback"]["user_input"] + [user_input],
"response": dataset["feedback"]["response"] + [response],
"feedback_type": dataset["feedback"]["feedback_type"] + [feedback_type],
"improvement": dataset["feedback"]["improvement"] + [improvement]
})
dataset.push_to_hub(DATASET_NAME)
def handle_feedback(response, feedback_type, improvement):
global last_user_input
save_feedback(last_user_input, response, feedback_type, improvement)
return "感謝您的反饋!"
def handle_user_input(user_input):
print(f"User input: {user_input}")
global last_user_input
last_user_input = user_input # 保存最新的用戶輸入
return run_sync(handle_input, user_input)
# 讀取並顯示反饋內容的函數
def show_feedback():
try:
feedbacks = dataset["feedback"].to_pandas().to_dict(orient="records")
print(f"Feedbacks: {feedbacks}") # Debug information
return feedbacks
except Exception as e:
print(f"Error: {e}") # Debug information
return {"error": str(e)}
TITLE = """<h1>Large Language Model (LLM) Playground 💬 <a href='https://support.maicoin.com/zh-TW/support/home' target='_blank'>Cryptocurrency Exchange FAQ</a></h1>"""
SUBTITLE = """<h2><a href='https://www.twman.org' target='_blank'>TonTon Huang Ph.D.</a> | <a href='https://blog.twman.org/p/deeplearning101.html' target='_blank'>手把手帶你一起踩AI坑</a><br></h2>"""
LINKS = """
<a href='https://github.com/Deep-Learning-101' target='_blank'>Deep Learning 101 Github</a> | <a href='http://deeplearning101.twman.org' target='_blank'>Deep Learning 101</a> | <a href='https://www.facebook.com/groups/525579498272187/' target='_blank'>台灣人工智慧社團 FB</a> | <a href='https://www.youtube.com/c/DeepLearning101' target='_blank'>YouTube</a><br>
<a href='https://blog.twman.org/2025/03/AIAgent.html' target='_blank'>那些 AI Agent 要踩的坑</a>:探討多種 AI 代理人工具的應用經驗與挑戰,分享實用經驗與工具推薦。<br>
<a href='https://blog.twman.org/2024/08/LLM.html' target='_blank'>白話文手把手帶你科普 GenAI</a>:淺顯介紹生成式人工智慧核心概念,強調硬體資源和數據的重要性。<br>
<a href='https://blog.twman.org/2024/09/LLM.html' target='_blank'>大型語言模型直接就打完收工?</a>:回顧 LLM 領域探索歷程,討論硬體升級對 AI 開發的重要性。<br>
<a href='https://blog.twman.org/2024/07/RAG.html' target='_blank'>那些檢索增強生成要踩的坑</a>:探討 RAG 技術應用與挑戰,提供實用經驗分享和工具建議。<br>
<a href='https://blog.twman.org/2024/02/LLM.html' target='_blank'>那些大型語言模型要踩的坑</a>:探討多種 LLM 工具的應用與挑戰,強調硬體資源的重要性。<br>
<a href='https://blog.twman.org/2023/04/GPT.html' target='_blank'>Large Language Model,LLM</a>:探討 LLM 的發展與應用,強調硬體資源在開發中的關鍵作用。。<br>
<a href='https://blog.twman.org/2024/11/diffusion.html' target='_blank'>ComfyUI + Stable Diffuision</a>:深入探討影像生成與分割技術的應用,強調硬體資源的重要性。<br>
<a href='https://blog.twman.org/2024/02/asr-tts.html' target='_blank'>那些ASR和TTS可能會踩的坑</a>:探討 ASR 和 TTS 技術應用中的問題,強調數據質量的重要性。<br>
<a href='https://blog.twman.org/2021/04/NLP.html' target='_blank'>那些自然語言處理 (Natural Language Processing, NLP) 踩的坑</a>:分享 NLP 領域的實踐經驗,強調數據質量對模型效果的影響。<br>
<a href='https://blog.twman.org/2021/04/ASR.html' target='_blank'>那些語音處理 (Speech Processing) 踩的坑</a>:分享語音處理領域的實務經驗,強調資料品質對模型效果的影響。<br>
<a href='https://blog.twman.org/2023/07/wsl.html' target='_blank'>用PPOCRLabel來幫PaddleOCR做OCR的微調和標註</a><br>
<a href='https://blog.twman.org/2023/07/HugIE.html' target='_blank'>基於機器閱讀理解和指令微調的統一信息抽取框架之診斷書醫囑資訊擷取分析</a><br>
"""
# 添加示例
examples = [
["MAX 帳號刪除關戶後,又重新註冊 MAX 後要怎辦?"],
["手機APP怎麼操作掛單交易?"],
["USDT 怎樣換新台幣?"],
["新台幣入金要怎操作"]
]
with gr.Blocks() as iface:
gr.HTML(TITLE)
gr.HTML(SUBTITLE)
gr.HTML(LINKS)
with gr.Row():
chatbot = gr.Chatbot()
with gr.Row():
user_input = gr.Textbox(label='輸入您的問題', placeholder="在此輸入問題...")
submit_button = gr.Button("問題輸入好,請點我送出")
gr.Examples(examples=examples, inputs=user_input)
with gr.Row():
# like_button = gr.Button(" 👍 覺得答案很棒,請按我;或者直接繼續問新問題亦可")
dislike_button = gr.Button(" 👎 覺得答案待改善,請輸入改進建議,再按我送出保存")
improvement_input = gr.Textbox(label='請輸入改進建議', placeholder='請輸入如何改進模型回應的建議')
with gr.Row():
feedback_output = gr.Textbox(label='反饋結果執行狀態', interactive=False)
with gr.Row():
show_feedback_button = gr.Button("查看目前所有反饋記錄")
feedback_display = gr.JSON(label='所有反饋記錄')
def chat(user_input, history):
response = handle_user_input(user_input)
history.append((user_input, response))
return history, history
submit_button.click(fn=chat, inputs=[user_input, chatbot], outputs=[chatbot, chatbot])
# like_button.click(
# fn=lambda response, improvement: handle_feedback(response, "like", improvement),
# inputs=[chatbot, improvement_input],
# outputs=feedback_output
# )
dislike_button.click(
fn=lambda response, improvement: handle_feedback(response, "dislike", improvement),
inputs=[chatbot, improvement_input],
outputs=feedback_output
)
show_feedback_button.click(fn=show_feedback, outputs=feedback_display)
iface.launch() |