Spaces:
Running
Running
File size: 7,719 Bytes
e95b4e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
# -*- coding: utf-8 -*-
# @Time : 2022/4/16 12:10 下午
# @Author : JianingWang
# @File : multiple_choice.py
import torch
from torch import nn
from torch.nn import CrossEntropyLoss
import torch.nn.functional as F
# from transformers import MegatronBertPreTrainedModel, MegatronBertModel
from transformers.models.megatron_bert import MegatronBertPreTrainedModel, MegatronBertModel
from transformers.modeling_outputs import MultipleChoiceModelOutput
class MegatronBertForMultipleChoice(MegatronBertPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.bert = MegatronBertModel(config)
# classifier_dropout = (
# config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
# )
classifier_dropout = 0.2
self.dropout = nn.Dropout(classifier_dropout)
self.classifier = nn.Linear(config.hidden_size, 1)
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
pseudo=None
):
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
`input_ids` above)
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
inputs_embeds = (
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
if inputs_embeds is not None
else None
)
outputs = self.bert(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = outputs[1] # [batch_size, num_choices, hidden_dim]
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output) # [batch_size, num_choices, 1]
reshaped_logits = logits.view(-1, num_choices) # [batch_size, num_choices]
loss = None
if labels is not None:
if pseudo is None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(reshaped_logits, labels)
else:
loss_fct = CrossEntropyLoss(reduction="none")
loss = loss_fct(reshaped_logits, labels)
weight = 1 - pseudo * 0.9
loss *= weight
loss = loss.mean()
if not return_dict:
output = (reshaped_logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return MultipleChoiceModelOutput(
loss=loss,
logits=reshaped_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
class MegatronBertRDropForMultipleChoice(MegatronBertPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.bert = MegatronBertModel(config)
# classifier_dropout = (
# config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
# )
classifier_dropout = 0.2
self.dropout = nn.Dropout(classifier_dropout)
self.classifier = nn.Linear(config.hidden_size, 1)
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
`input_ids` above)
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
inputs_embeds = (
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
if inputs_embeds is not None
else None
)
logits_list = []
for i in range(2):
outputs = self.bert(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = outputs[1]
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
logits_list.append(logits.view(-1, num_choices))
loss = None
alpha = 1.0
for logits in logits_list:
if labels is not None:
loss_fct = CrossEntropyLoss()
l = loss_fct(logits, labels)
if loss:
loss += alpha * l
else:
loss = alpha * l
if loss is not None:
p = torch.log_softmax(logits_list[0], dim=-1)
p_tec = torch.exp(p)
q = torch.log_softmax(logits_list[-1], dim=-1)
q_tec = torch.exp(q)
kl_loss = F.kl_div(p, q_tec, reduction="none").sum()
reverse_kl_loss = F.kl_div(q, p_tec, reduction="none").sum()
loss += 0.5 * (kl_loss + reverse_kl_loss) / 2.
return MultipleChoiceModelOutput(
loss=loss,
logits=logits_list[0],
hidden_states=None,
attentions=None
)
|