Spaces:
Running
Running
File size: 17,235 Bytes
e95b4e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 |
# -*- coding: utf-8 -*-
# @Time : 2022/4/12 12:12 下午
# @Author : JianingWang
# @File : duma.py
import math
import torch
from torch import nn
from torch.nn import CrossEntropyLoss
from transformers.models.bert.modeling_bert import BertModel, BertPreTrainedModel
from transformers.models.roberta.modeling_roberta import RobertaModel, RobertaPreTrainedModel
from transformers.models.albert.modeling_albert import AlbertModel, AlbertPreTrainedModel
from transformers.models.megatron_bert.modeling_megatron_bert import MegatronBertModel, MegatronBertPreTrainedModel
from transformers.modeling_outputs import MultipleChoiceModelOutput
def split_context_query(sequence_output, pq_end_pos, input_ids):
context_max_len = sequence_output.size(1)
query_max_len = sequence_output.size(1)
sep_tok_len = 1 # [SEP]
context_sequence_output = sequence_output.new(
torch.Size((sequence_output.size(0), context_max_len, sequence_output.size(2)))).zero_()
query_sequence_output = sequence_output.new_zeros(
(sequence_output.size(0), query_max_len, sequence_output.size(2)))
query_attention_mask = sequence_output.new_zeros((sequence_output.size(0), query_max_len))
context_attention_mask = sequence_output.new_zeros((sequence_output.size(0), context_max_len))
for i in range(0, sequence_output.size(0)):
p_end = pq_end_pos[i][0]
q_end = pq_end_pos[i][1]
context_sequence_output[i, :min(context_max_len, p_end)] = sequence_output[i, 1: 1 + min(context_max_len, p_end)]
idx = min(query_max_len, q_end - p_end - sep_tok_len)
query_sequence_output[i, :idx] = sequence_output[i, p_end + sep_tok_len + 1: p_end + sep_tok_len + 1 + min(q_end - p_end - sep_tok_len, query_max_len)]
query_attention_mask[i, :idx] = sequence_output.new_ones((1, query_max_len))[0, :idx]
context_attention_mask[i, : min(context_max_len, p_end)] = sequence_output.new_ones((1, context_max_len))[0, : min(context_max_len, p_end)]
return context_sequence_output, query_sequence_output, context_attention_mask, query_attention_mask
class BertCoAttention(nn.Module):
def __init__(self, config):
super(BertCoAttention, self).__init__()
if config.hidden_size % config.num_attention_heads != 0:
raise ValueError(
"The hidden size (%d) is not a multiple of the number of attention "
"heads (%d)" % (config.hidden_size, config.num_attention_heads))
self.output_attentions = config.output_attentions
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(self, context_states, query_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None):
mixed_query_layer = self.query(query_states)
extended_attention_mask = attention_mask[:, None, None, :]
# extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
attention_mask = extended_attention_mask
# If this is instantiated as a cross-attention module, the keys
# and values come from an encoder; the attention mask needs to be
# such that the encoder"s padding tokens are not attended to.
if encoder_hidden_states is not None:
mixed_key_layer = self.key(encoder_hidden_states)
mixed_value_layer = self.value(encoder_hidden_states)
attention_mask = encoder_attention_mask
else:
mixed_key_layer = self.key(context_states)
mixed_value_layer = self.value(context_states)
query_layer = self.transpose_for_scores(mixed_query_layer)
key_layer = self.transpose_for_scores(mixed_key_layer)
value_layer = self.transpose_for_scores(mixed_value_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.Softmax(dim=-1)(attention_scores)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
# outputs = (context_layer, attention_probs) if self.output_attentions else (context_layer,)
outputs = context_layer
return outputs
class BertDUMAForMultipleChoice(BertPreTrainedModel):
def __init__(self, config):
super(BertDUMAForMultipleChoice, self).__init__(config)
self.bert = BertModel(config)
self.classifier_2 = nn.Linear(2 * config.hidden_size, 1)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.bert_att = BertCoAttention(config)
self.init_weights()
def forward(self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None,
inputs_embeds=None, labels=None, pq_end_pos=None, iter=1):
num_choices = input_ids.shape[1]
flat_input_ids = input_ids.view(-1, input_ids.size(-1))
flat_position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
flat_head_mask = head_mask.view(-1, head_mask.size(-1)) if head_mask is not None else None
flat_inputs_embeds = inputs_embeds.view(-1, inputs_embeds.size(-1)) if inputs_embeds is not None else None
outputs = self.bert(
input_ids=flat_input_ids,
attention_mask=flat_attention_mask,
token_type_ids=flat_token_type_ids,
position_ids=flat_position_ids,
head_mask=flat_head_mask,
inputs_embeds=flat_inputs_embeds
)
sequence_output = outputs[0]
pq_end_pos = pq_end_pos.view(-1, pq_end_pos.size(-1))
context_sequence_output, query_sequence_output, context_attention_mask, query_attention_mask = \
split_context_query(sequence_output, pq_end_pos, input_ids)
for _ in range(0, iter):
cq_biatt_output = self.bert_att(context_sequence_output, query_sequence_output, context_attention_mask)
qc_biatt_output = self.bert_att(query_sequence_output, context_sequence_output, query_attention_mask)
query_sequence_output = cq_biatt_output
context_sequence_output = qc_biatt_output
cat_output = torch.cat([torch.mean(qc_biatt_output, 1), torch.mean(cq_biatt_output, 1)], 1)
pooled_output = self.dropout(cat_output)
logits = self.classifier_2(pooled_output)
reshaped_logits = logits.view(-1, num_choices)
outputs = (reshaped_logits,) + outputs[2:] # add hidden states and attention if they are here
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(reshaped_logits, labels)
outputs = (loss,) + outputs
return outputs # (loss), reshaped_logits, (hidden_states), (attentions)
class RobertaDUMAForMultipleChoice(RobertaPreTrainedModel):
def __init__(self, config):
super(RobertaDUMAForMultipleChoice, self).__init__(config)
self.roberta = RobertaModel(config)
self.classifier_2 = nn.Linear(2 * config.hidden_size, 1)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.bert_att = BertCoAttention(config)
self.init_weights()
def forward(self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None,
inputs_embeds=None, labels=None, pq_end_pos=None, iter=1):
num_choices = input_ids.shape[1]
flat_input_ids = input_ids.view(-1, input_ids.size(-1))
flat_position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
flat_head_mask = head_mask.view(-1, head_mask.size(-1)) if head_mask is not None else None
flat_inputs_embeds = inputs_embeds.view(-1, inputs_embeds.size(-1)) if inputs_embeds is not None else None
outputs = self.roberta(
input_ids=flat_input_ids,
attention_mask=flat_attention_mask,
token_type_ids=flat_token_type_ids,
position_ids=flat_position_ids,
head_mask=flat_head_mask,
inputs_embeds=flat_inputs_embeds
)
sequence_output = outputs[0]
pq_end_pos = pq_end_pos.view(-1, pq_end_pos.size(-1))
context_sequence_output, query_sequence_output, context_attention_mask, query_attention_mask = \
split_context_query(sequence_output, pq_end_pos, input_ids)
for _ in range(0, iter):
cq_biatt_output = self.bert_att(context_sequence_output, query_sequence_output, context_attention_mask)
qc_biatt_output = self.bert_att(query_sequence_output, context_sequence_output, query_attention_mask)
query_sequence_output = cq_biatt_output
context_sequence_output = qc_biatt_output
cat_output = torch.cat([torch.mean(qc_biatt_output, 1), torch.mean(cq_biatt_output, 1)], 1)
pooled_output = self.dropout(cat_output)
logits = self.classifier_2(pooled_output)
reshaped_logits = logits.view(-1, num_choices)
outputs = (reshaped_logits,) + outputs[2:] # add hidden states and attention if they are here
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(reshaped_logits, labels)
outputs = (loss,) + outputs
return outputs # (loss), reshaped_logits, (hidden_states), (attentions)
class AlbertDUMAForMultipleChoice(AlbertPreTrainedModel):
def __init__(self, config):
super(AlbertDUMAForMultipleChoice, self).__init__(config)
self.albert = AlbertModel(config)
self.classifier_2 = nn.Linear(2 * config.hidden_size, 1)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.bert_att = BertCoAttention(config)
self.init_weights()
def forward(self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None,
inputs_embeds=None, labels=None, pq_end_pos=None, iter=1):
num_choices = input_ids.shape[1]
flat_input_ids = input_ids.view(-1, input_ids.size(-1))
flat_position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
flat_head_mask = head_mask.view(-1, head_mask.size(-1)) if head_mask is not None else None
flat_inputs_embeds = inputs_embeds.view(-1, inputs_embeds.size(-1)) if inputs_embeds is not None else None
outputs = self.albert(
input_ids=flat_input_ids,
attention_mask=flat_attention_mask,
token_type_ids=flat_token_type_ids,
position_ids=flat_position_ids,
head_mask=flat_head_mask,
inputs_embeds=flat_inputs_embeds
)
sequence_output = outputs[0]
pq_end_pos = pq_end_pos.view(-1, pq_end_pos.size(-1))
context_sequence_output, query_sequence_output, context_attention_mask, query_attention_mask = \
split_context_query(sequence_output, pq_end_pos, input_ids)
for _ in range(0, iter):
cq_biatt_output = self.bert_att(context_sequence_output, query_sequence_output, context_attention_mask)
qc_biatt_output = self.bert_att(query_sequence_output, context_sequence_output, query_attention_mask)
query_sequence_output = cq_biatt_output
context_sequence_output = qc_biatt_output
cat_output = torch.cat([torch.mean(qc_biatt_output, 1), torch.mean(cq_biatt_output, 1)], 1)
pooled_output = self.dropout(cat_output)
logits = self.classifier_2(pooled_output)
reshaped_logits = logits.view(-1, num_choices)
outputs = (reshaped_logits,) + outputs[2:] # add hidden states and attention if they are here
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(reshaped_logits, labels)
outputs = (loss,) + outputs
return outputs # (loss), reshaped_logits, (hidden_states), (attentions)
class MegatronDumaForMultipleChoice(MegatronBertPreTrainedModel):
def __init__(self, config):
super(MegatronDumaForMultipleChoice, self).__init__(config)
self.bert = MegatronBertModel(config)
self.classifier_2 = nn.Linear(2 * config.hidden_size, 1)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.bert_att = BertCoAttention(config)
self.init_weights()
def forward(self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None,
inputs_embeds=None, labels=None, pq_end_pos=None, iter=1):
num_choices = input_ids.shape[1]
flat_input_ids = input_ids.view(-1, input_ids.size(-1))
flat_position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
flat_head_mask = head_mask.view(-1, head_mask.size(-1)) if head_mask is not None else None
flat_inputs_embeds = inputs_embeds.view(-1, inputs_embeds.size(-1)) if inputs_embeds is not None else None
outputs = self.bert(
input_ids=flat_input_ids,
attention_mask=flat_attention_mask,
token_type_ids=flat_token_type_ids,
position_ids=flat_position_ids,
head_mask=flat_head_mask,
inputs_embeds=flat_inputs_embeds
)
sequence_output = outputs[0]
pq_end_pos = pq_end_pos.view(-1, pq_end_pos.size(-1))
context_sequence_output, query_sequence_output, context_attention_mask, query_attention_mask = \
split_context_query(sequence_output, pq_end_pos, input_ids)
for _ in range(0, iter):
cq_biatt_output = self.bert_att(context_sequence_output, query_sequence_output, context_attention_mask)
qc_biatt_output = self.bert_att(query_sequence_output, context_sequence_output, query_attention_mask)
query_sequence_output = cq_biatt_output
context_sequence_output = qc_biatt_output
cat_output = torch.cat([torch.mean(qc_biatt_output, 1), torch.mean(cq_biatt_output, 1)], 1)
pooled_output = self.dropout(cat_output)
logits = self.classifier_2(pooled_output)
reshaped_logits = logits.view(-1, num_choices)
outputs = (reshaped_logits,) + outputs[2:] # add hidden states and attention if they are here
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(reshaped_logits, labels)
outputs = (loss,) + outputs
return outputs # (loss), reshaped_logits, (hidden_states), (attentions)
|