Spaces:
Sleeping
Sleeping
File size: 22,422 Bytes
d131d1a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 |
# -*- coding: utf-8 -*-
# @Time : 2022/4/21 5:30 下午
# @Author : JianingWang
# @File : global_pointer.py
from typing import Optional
import torch
import numpy as np
import torch.nn as nn
from dataclasses import dataclass
from torch.nn import BCEWithLogitsLoss
from transformers import MegatronBertModel, MegatronBertPreTrainedModel
from transformers.file_utils import ModelOutput
from transformers.models.bert import BertPreTrainedModel, BertModel
from transformers.models.roberta.modeling_roberta import RobertaModel, RobertaPreTrainedModel
from roformer import RoFormerPreTrainedModel, RoFormerModel, RoFormerModel
class RawGlobalPointer(nn.Module):
def __init__(self, encoder, ent_type_size, inner_dim, RoPE=True):
# encodr: RoBerta-Large as encoder
# inner_dim: 64
# ent_type_size: ent_cls_num
super().__init__()
self.encoder = encoder
self.ent_type_size = ent_type_size
self.inner_dim = inner_dim
self.hidden_size = encoder.config.hidden_size
self.dense = nn.Linear(self.hidden_size, self.ent_type_size * self.inner_dim * 2)
self.RoPE = RoPE
def sinusoidal_position_embedding(self, batch_size, seq_len, output_dim):
position_ids = torch.arange(0, seq_len, dtype=torch.float).unsqueeze(-1)
indices = torch.arange(0, output_dim // 2, dtype=torch.float)
indices = torch.pow(10000, -2 * indices / output_dim)
embeddings = position_ids * indices
embeddings = torch.stack([torch.sin(embeddings), torch.cos(embeddings)], dim=-1)
embeddings = embeddings.repeat((batch_size, *([1] * len(embeddings.shape))))
embeddings = torch.reshape(embeddings, (batch_size, seq_len, output_dim))
embeddings = embeddings.to(self.device)
return embeddings
def forward(self, input_ids, attention_mask, token_type_ids):
self.device = input_ids.device
context_outputs = self.encoder(input_ids, attention_mask, token_type_ids)
# last_hidden_state:(batch_size, seq_len, hidden_size)
last_hidden_state = context_outputs[0]
batch_size = last_hidden_state.size()[0]
seq_len = last_hidden_state.size()[1]
outputs = self.dense(last_hidden_state)
outputs = torch.split(outputs, self.inner_dim * 2, dim=-1)
outputs = torch.stack(outputs, dim=-2)
qw, kw = outputs[..., :self.inner_dim], outputs[..., self.inner_dim:]
if self.RoPE:
# pos_emb:(batch_size, seq_len, inner_dim)
pos_emb = self.sinusoidal_position_embedding(batch_size, seq_len, self.inner_dim)
cos_pos = pos_emb[..., None, 1::2].repeat_interleave(2, dim=-1)
sin_pos = pos_emb[..., None, ::2].repeat_interleave(2, dim=-1)
qw2 = torch.stack([-qw[..., 1::2], qw[..., ::2]], -1)
qw2 = qw2.reshape(qw.shape)
qw = qw * cos_pos + qw2 * sin_pos
kw2 = torch.stack([-kw[..., 1::2], kw[..., ::2]], -1)
kw2 = kw2.reshape(kw.shape)
kw = kw * cos_pos + kw2 * sin_pos
# logits:(batch_size, ent_type_size, seq_len, seq_len)
logits = torch.einsum("bmhd,bnhd->bhmn", qw, kw)
# padding mask
pad_mask = attention_mask.unsqueeze(1).unsqueeze(1).expand(batch_size, self.ent_type_size, seq_len, seq_len)
logits = logits * pad_mask - (1 - pad_mask) * 1e12
# 排除下三角
mask = torch.tril(torch.ones_like(logits), -1)
logits = logits - mask * 1e12
return logits / self.inner_dim ** 0.5
class SinusoidalPositionEmbedding(nn.Module):
"""定义Sin-Cos位置Embedding
"""
def __init__(
self, output_dim, merge_mode="add", custom_position_ids=False):
super(SinusoidalPositionEmbedding, self).__init__()
self.output_dim = output_dim
self.merge_mode = merge_mode
self.custom_position_ids = custom_position_ids
def forward(self, inputs):
if self.custom_position_ids:
seq_len = inputs.shape[1]
inputs, position_ids = inputs
position_ids = position_ids.type(torch.float)
else:
input_shape = inputs.shape
batch_size, seq_len = input_shape[0], input_shape[1]
position_ids = torch.arange(seq_len).type(torch.float)[None]
indices = torch.arange(self.output_dim // 2).type(torch.float)
indices = torch.pow(10000.0, -2 * indices / self.output_dim)
embeddings = torch.einsum("bn,d->bnd", position_ids, indices)
embeddings = torch.stack([torch.sin(embeddings), torch.cos(embeddings)], dim=-1)
embeddings = torch.reshape(embeddings, (-1, seq_len, self.output_dim))
if self.merge_mode == "add":
return inputs + embeddings.to(inputs.device)
elif self.merge_mode == "mul":
return inputs * (embeddings + 1.0).to(inputs.device)
elif self.merge_mode == "zero":
return embeddings.to(inputs.device)
def multilabel_categorical_crossentropy(y_pred, y_true):
y_pred = (1 - 2 * y_true) * y_pred # -1 -> pos classes, 1 -> neg classes
y_pred_neg = y_pred - y_true * 1e12 # mask the pred outputs of pos classes
y_pred_pos = y_pred - (1 - y_true) * 1e12 # mask the pred outputs of neg classes
zeros = torch.zeros_like(y_pred[..., :1])
y_pred_neg = torch.cat([y_pred_neg, zeros], dim=-1)
y_pred_pos = torch.cat([y_pred_pos, zeros], dim=-1)
neg_loss = torch.logsumexp(y_pred_neg, dim=-1)
pos_loss = torch.logsumexp(y_pred_pos, dim=-1)
# print(y_pred, y_true, pos_loss)
return (neg_loss + pos_loss).mean()
def multilabel_categorical_crossentropy2(y_pred, y_true):
y_pred = (1 - 2 * y_true) * y_pred # -1 -> pos classes, 1 -> neg classes
y_pred_neg = y_pred.clone()
y_pred_pos = y_pred.clone()
y_pred_neg[y_true>0] -= float("inf")
y_pred_pos[y_true<1] -= float("inf")
# y_pred_neg = y_pred - y_true * float("inf") # mask the pred outputs of pos classes
# y_pred_pos = y_pred - (1 - y_true) * float("inf") # mask the pred outputs of neg classes
zeros = torch.zeros_like(y_pred[..., :1])
y_pred_neg = torch.cat([y_pred_neg, zeros], dim=-1)
y_pred_pos = torch.cat([y_pred_pos, zeros], dim=-1)
neg_loss = torch.logsumexp(y_pred_neg, dim=-1)
pos_loss = torch.logsumexp(y_pred_pos, dim=-1)
# print(y_pred, y_true, pos_loss)
return (neg_loss + pos_loss).mean()
@dataclass
class GlobalPointerOutput(ModelOutput):
loss: Optional[torch.FloatTensor] = None
topk_probs: torch.FloatTensor = None
topk_indices: torch.IntTensor = None
class BertForEffiGlobalPointer(BertPreTrainedModel):
def __init__(self, config):
# encodr: RoBerta-Large as encoder
# inner_dim: 64
# ent_type_size: ent_cls_num
super().__init__(config)
self.bert = BertModel(config)
self.ent_type_size = config.ent_type_size
self.inner_dim = config.inner_dim
self.hidden_size = config.hidden_size
self.RoPE = config.RoPE
self.dense_1 = nn.Linear(self.hidden_size, self.inner_dim * 2)
self.dense_2 = nn.Linear(self.hidden_size, self.ent_type_size * 2) # 原版的dense2是(inner_dim * 2, ent_type_size * 2)
def sequence_masking(self, x, mask, value="-inf", axis=None):
if mask is None:
return x
else:
if value == "-inf":
value = -1e12
elif value == "inf":
value = 1e12
assert axis > 0, "axis must be greater than 0"
for _ in range(axis - 1):
mask = torch.unsqueeze(mask, 1)
for _ in range(x.ndim - mask.ndim):
mask = torch.unsqueeze(mask, mask.ndim)
return x * mask + value * (1 - mask)
def add_mask_tril(self, logits, mask):
if mask.dtype != logits.dtype:
mask = mask.type(logits.dtype)
logits = self.sequence_masking(logits, mask, "-inf", logits.ndim - 2)
logits = self.sequence_masking(logits, mask, "-inf", logits.ndim - 1)
# 排除下三角
mask = torch.tril(torch.ones_like(logits), diagonal=-1)
logits = logits - mask * 1e12
return logits
def forward(self, input_ids, attention_mask, token_type_ids, labels=None, short_labels=None):
# with torch.no_grad():
context_outputs = self.bert(input_ids, attention_mask, token_type_ids)
last_hidden_state = context_outputs.last_hidden_state # [bz, seq_len, hidden_dim]
outputs = self.dense_1(last_hidden_state) # [bz, seq_len, 2*inner_dim]
qw, kw = outputs[..., ::2], outputs[..., 1::2] # 从0,1开始间隔为2 最后一个纬度,从0开始,取奇数位置所有向量汇总
batch_size = input_ids.shape[0]
if self.RoPE:
pos = SinusoidalPositionEmbedding(self.inner_dim, "zero")(outputs)
cos_pos = pos[..., 1::2].repeat_interleave(2, dim=-1) # e.g. [0.34, 0.90] -> [0.34, 0.34, 0.90, 0.90]
sin_pos = pos[..., ::2].repeat_interleave(2, dim=-1)
qw2 = torch.stack([-qw[..., 1::2], qw[..., ::2]], 3)
qw2 = torch.reshape(qw2, qw.shape)
qw = qw * cos_pos + qw2 * sin_pos
kw2 = torch.stack([-kw[..., 1::2], kw[..., ::2]], 3)
kw2 = torch.reshape(kw2, kw.shape)
kw = kw * cos_pos + kw2 * sin_pos
logits = torch.einsum("bmd,bnd->bmn", qw, kw) / self.inner_dim ** 0.5
bias = torch.einsum("bnh->bhn", self.dense_2(last_hidden_state)) / 2
logits = logits[:, None] + bias[:, ::2, None] + bias[:, 1::2, :, None] # logits[:, None] 增加一个维度
# logit_mask = self.add_mask_tril(logits, mask=attention_mask)
loss = None
mask = torch.triu(attention_mask.unsqueeze(2) * attention_mask.unsqueeze(1)) # 上三角矩阵
# mask = torch.where(mask > 0, 0.0, 1)
if labels is not None:
y_pred = logits - (1-mask.unsqueeze(1))*1e12
y_true = labels.view(input_ids.shape[0] * self.ent_type_size, -1)
y_pred = y_pred.view(input_ids.shape[0] * self.ent_type_size, -1)
loss = multilabel_categorical_crossentropy(y_pred, y_true)
with torch.no_grad():
prob = torch.sigmoid(logits) * mask.unsqueeze(1)
topk = torch.topk(prob.view(batch_size, self.ent_type_size, -1), 50, dim=-1)
return GlobalPointerOutput(
loss=loss,
topk_probs=topk.values,
topk_indices=topk.indices
)
class RobertaForEffiGlobalPointer(RobertaPreTrainedModel):
def __init__(self, config):
# encodr: RoBerta-Large as encoder
# inner_dim: 64
# ent_type_size: ent_cls_num
super().__init__(config)
self.roberta = RobertaModel(config)
self.ent_type_size = config.ent_type_size
self.inner_dim = config.inner_dim
self.hidden_size = config.hidden_size
self.RoPE = config.RoPE
self.dense_1 = nn.Linear(self.hidden_size, self.inner_dim * 2)
self.dense_2 = nn.Linear(self.hidden_size, self.ent_type_size * 2) # 原版的dense2是(inner_dim * 2, ent_type_size * 2)
def sequence_masking(self, x, mask, value="-inf", axis=None):
if mask is None:
return x
else:
if value == "-inf":
value = -1e12
elif value == "inf":
value = 1e12
assert axis > 0, "axis must be greater than 0"
for _ in range(axis - 1):
mask = torch.unsqueeze(mask, 1)
for _ in range(x.ndim - mask.ndim):
mask = torch.unsqueeze(mask, mask.ndim)
return x * mask + value * (1 - mask)
def add_mask_tril(self, logits, mask):
if mask.dtype != logits.dtype:
mask = mask.type(logits.dtype)
logits = self.sequence_masking(logits, mask, "-inf", logits.ndim - 2)
logits = self.sequence_masking(logits, mask, "-inf", logits.ndim - 1)
# 排除下三角
mask = torch.tril(torch.ones_like(logits), diagonal=-1)
logits = logits - mask * 1e12
return logits
def forward(self, input_ids, attention_mask, token_type_ids, labels=None, short_labels=None):
# with torch.no_grad():
context_outputs = self.roberta(input_ids, attention_mask, token_type_ids)
last_hidden_state = context_outputs.last_hidden_state # [bz, seq_len, hidden_dim]
outputs = self.dense_1(last_hidden_state) # [bz, seq_len, 2*inner_dim]
qw, kw = outputs[..., ::2], outputs[..., 1::2] # 从0,1开始间隔为2 最后一个纬度,从0开始,取奇数位置所有向量汇总
batch_size = input_ids.shape[0]
if self.RoPE:
pos = SinusoidalPositionEmbedding(self.inner_dim, "zero")(outputs)
cos_pos = pos[..., 1::2].repeat_interleave(2, dim=-1) # e.g. [0.34, 0.90] -> [0.34, 0.34, 0.90, 0.90]
sin_pos = pos[..., ::2].repeat_interleave(2, dim=-1)
qw2 = torch.stack([-qw[..., 1::2], qw[..., ::2]], 3)
qw2 = torch.reshape(qw2, qw.shape)
qw = qw * cos_pos + qw2 * sin_pos
kw2 = torch.stack([-kw[..., 1::2], kw[..., ::2]], 3)
kw2 = torch.reshape(kw2, kw.shape)
kw = kw * cos_pos + kw2 * sin_pos
logits = torch.einsum("bmd,bnd->bmn", qw, kw) / self.inner_dim ** 0.5
bias = torch.einsum("bnh->bhn", self.dense_2(last_hidden_state)) / 2
logits = logits[:, None] + bias[:, ::2, None] + bias[:, 1::2, :, None] # logits[:, None] 增加一个维度
# logit_mask = self.add_mask_tril(logits, mask=attention_mask)
loss = None
mask = torch.triu(attention_mask.unsqueeze(2) * attention_mask.unsqueeze(1)) # 上三角矩阵
# mask = torch.where(mask > 0, 0.0, 1)
if labels is not None:
y_pred = logits - (1-mask.unsqueeze(1))*1e12
y_true = labels.view(input_ids.shape[0] * self.ent_type_size, -1)
y_pred = y_pred.view(input_ids.shape[0] * self.ent_type_size, -1)
loss = multilabel_categorical_crossentropy(y_pred, y_true)
with torch.no_grad():
prob = torch.sigmoid(logits) * mask.unsqueeze(1)
topk = torch.topk(prob.view(batch_size, self.ent_type_size, -1), 50, dim=-1)
return GlobalPointerOutput(
loss=loss,
topk_probs=topk.values,
topk_indices=topk.indices
)
class RoformerForEffiGlobalPointer(RoFormerPreTrainedModel):
def __init__(self, config):
# encodr: RoBerta-Large as encoder
# inner_dim: 64
# ent_type_size: ent_cls_num
super().__init__(config)
self.roformer = RoFormerModel(config)
self.ent_type_size = config.ent_type_size
self.inner_dim = config.inner_dim
self.hidden_size = config.hidden_size
self.RoPE = config.RoPE
self.dense_1 = nn.Linear(self.hidden_size, self.inner_dim * 2)
self.dense_2 = nn.Linear(self.hidden_size, self.ent_type_size * 2) # 原版的dense2是(inner_dim * 2, ent_type_size * 2)
def sequence_masking(self, x, mask, value="-inf", axis=None):
if mask is None:
return x
else:
if value == "-inf":
value = -1e12
elif value == "inf":
value = 1e12
assert axis > 0, "axis must be greater than 0"
for _ in range(axis - 1):
mask = torch.unsqueeze(mask, 1)
for _ in range(x.ndim - mask.ndim):
mask = torch.unsqueeze(mask, mask.ndim)
return x * mask + value * (1 - mask)
def add_mask_tril(self, logits, mask):
if mask.dtype != logits.dtype:
mask = mask.type(logits.dtype)
logits = self.sequence_masking(logits, mask, "-inf", logits.ndim - 2)
logits = self.sequence_masking(logits, mask, "-inf", logits.ndim - 1)
# 排除下三角
mask = torch.tril(torch.ones_like(logits), diagonal=-1)
logits = logits - mask * 1e12
return logits
def forward(self, input_ids, attention_mask, token_type_ids, labels=None, short_labels=None):
# with torch.no_grad():
context_outputs = self.roformer(input_ids, attention_mask, token_type_ids)
last_hidden_state = context_outputs.last_hidden_state # [bz, seq_len, hidden_dim]
outputs = self.dense_1(last_hidden_state) # [bz, seq_len, 2*inner_dim]
qw, kw = outputs[..., ::2], outputs[..., 1::2] # 从0,1开始间隔为2 最后一个纬度,从0开始,取奇数位置所有向量汇总
batch_size = input_ids.shape[0]
if self.RoPE:
pos = SinusoidalPositionEmbedding(self.inner_dim, "zero")(outputs)
cos_pos = pos[..., 1::2].repeat_interleave(2, dim=-1) # e.g. [0.34, 0.90] -> [0.34, 0.34, 0.90, 0.90]
sin_pos = pos[..., ::2].repeat_interleave(2, dim=-1)
qw2 = torch.stack([-qw[..., 1::2], qw[..., ::2]], 3)
qw2 = torch.reshape(qw2, qw.shape)
qw = qw * cos_pos + qw2 * sin_pos
kw2 = torch.stack([-kw[..., 1::2], kw[..., ::2]], 3)
kw2 = torch.reshape(kw2, kw.shape)
kw = kw * cos_pos + kw2 * sin_pos
logits = torch.einsum("bmd,bnd->bmn", qw, kw) / self.inner_dim ** 0.5
bias = torch.einsum("bnh->bhn", self.dense_2(last_hidden_state)) / 2
logits = logits[:, None] + bias[:, ::2, None] + bias[:, 1::2, :, None] # logits[:, None] 增加一个维度
# logit_mask = self.add_mask_tril(logits, mask=attention_mask)
loss = None
mask = torch.triu(attention_mask.unsqueeze(2) * attention_mask.unsqueeze(1)) # 上三角矩阵
# mask = torch.where(mask > 0, 0.0, 1)
if labels is not None:
y_pred = logits - (1-mask.unsqueeze(1))*1e12
y_true = labels.view(input_ids.shape[0] * self.ent_type_size, -1)
y_pred = y_pred.view(input_ids.shape[0] * self.ent_type_size, -1)
loss = multilabel_categorical_crossentropy(y_pred, y_true)
with torch.no_grad():
prob = torch.sigmoid(logits) * mask.unsqueeze(1)
topk = torch.topk(prob.view(batch_size, self.ent_type_size, -1), 50, dim=-1)
return GlobalPointerOutput(
loss=loss,
topk_probs=topk.values,
topk_indices=topk.indices
)
class MegatronForEffiGlobalPointer(MegatronBertPreTrainedModel):
def __init__(self, config):
# encodr: RoBerta-Large as encoder
# inner_dim: 64
# ent_type_size: ent_cls_num
super().__init__(config)
self.bert = MegatronBertModel(config)
self.ent_type_size = config.ent_type_size
self.inner_dim = config.inner_dim
self.hidden_size = config.hidden_size
self.RoPE = config.RoPE
self.dense_1 = nn.Linear(self.hidden_size, self.inner_dim * 2)
self.dense_2 = nn.Linear(self.hidden_size, self.ent_type_size * 2) # 原版的dense2是(inner_dim * 2, ent_type_size * 2)
def sequence_masking(self, x, mask, value="-inf", axis=None):
if mask is None:
return x
else:
if value == "-inf":
value = -1e12
elif value == "inf":
value = 1e12
assert axis > 0, "axis must be greater than 0"
for _ in range(axis - 1):
mask = torch.unsqueeze(mask, 1)
for _ in range(x.ndim - mask.ndim):
mask = torch.unsqueeze(mask, mask.ndim)
return x * mask + value * (1 - mask)
def add_mask_tril(self, logits, mask):
if mask.dtype != logits.dtype:
mask = mask.type(logits.dtype)
logits = self.sequence_masking(logits, mask, "-inf", logits.ndim - 2)
logits = self.sequence_masking(logits, mask, "-inf", logits.ndim - 1)
# 排除下三角
mask = torch.tril(torch.ones_like(logits), diagonal=-1)
logits = logits - mask * 1e12
return logits
def forward(self, input_ids, attention_mask, token_type_ids, labels=None, short_labels=None):
# with torch.no_grad():
context_outputs = self.bert(input_ids, attention_mask, token_type_ids)
last_hidden_state = context_outputs.last_hidden_state # [bz, seq_len, hidden_dim]
outputs = self.dense_1(last_hidden_state) # [bz, seq_len, 2*inner_dim]
qw, kw = outputs[..., ::2], outputs[..., 1::2] # 从0,1开始间隔为2 最后一个纬度,从0开始,取奇数位置所有向量汇总
batch_size = input_ids.shape[0]
if self.RoPE:
pos = SinusoidalPositionEmbedding(self.inner_dim, "zero")(outputs)
cos_pos = pos[..., 1::2].repeat_interleave(2, dim=-1) # e.g. [0.34, 0.90] -> [0.34, 0.34, 0.90, 0.90]
sin_pos = pos[..., ::2].repeat_interleave(2, dim=-1)
qw2 = torch.stack([-qw[..., 1::2], qw[..., ::2]], 3)
qw2 = torch.reshape(qw2, qw.shape)
qw = qw * cos_pos + qw2 * sin_pos
kw2 = torch.stack([-kw[..., 1::2], kw[..., ::2]], 3)
kw2 = torch.reshape(kw2, kw.shape)
kw = kw * cos_pos + kw2 * sin_pos
logits = torch.einsum("bmd,bnd->bmn", qw, kw) / self.inner_dim ** 0.5
bias = torch.einsum("bnh->bhn", self.dense_2(last_hidden_state)) / 2
logits = logits[:, None] + bias[:, ::2, None] + bias[:, 1::2, :, None] # logits[:, None] 增加一个维度
# logit_mask = self.add_mask_tril(logits, mask=attention_mask)
loss = None
mask = torch.triu(attention_mask.unsqueeze(2) * attention_mask.unsqueeze(1)) # 上三角矩阵
# mask = torch.where(mask > 0, 0.0, 1)
if labels is not None:
y_pred = logits - (1-mask.unsqueeze(1))*1e12
y_true = labels.view(input_ids.shape[0] * self.ent_type_size, -1)
y_pred = y_pred.view(input_ids.shape[0] * self.ent_type_size, -1)
loss = multilabel_categorical_crossentropy(y_pred, y_true)
with torch.no_grad():
prob = torch.sigmoid(logits) * mask.unsqueeze(1)
topk = torch.topk(prob.view(batch_size, self.ent_type_size, -1), 50, dim=-1)
return GlobalPointerOutput(
loss=loss,
topk_probs=topk.values,
topk_indices=topk.indices
)
|