Spaces:
Sleeping
Sleeping
File size: 10,437 Bytes
45311fe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
# -*- coding: utf-8 -*-
# @Time : 2023/3/20 8:02 p.m.
# @Author : Jianing Wang
# @File : calibrate.py
import os
import numpy as np
import torch
"""
Use LM to classify label words for calibrating CLS
"""
class CLSCalibrator:
pass
"""
Use Causal LM to generate label words for calibrating CLS
e.g., use gpt2 to generate a label word with in-context prompts, and calibrate for the prediction.
Paper: http://proceedings.mlr.press/v139/zhao21c.html
"""
class CausalCLSCalibrator:
def __init__(self, model, tokenizer) -> None:
self.model = model
self.tokenizer = tokenizer
def calibrate(self, all_label_probs, content_free_examples, label2id, mode="diagonal_W"):
"""Perform calibration for de-biasing and obtain calibrated probability"""
p_cf = self.get_content_free_prediction(content_free_examples, label2id)
num_classes = all_label_probs.shape[1]
if p_cf is None:
# do not calibrate
W = np.identity(num_classes)
b = np.zeros([num_classes, 1])
else:
# calibrate
if mode == "diagonal_W":
W = np.linalg.inv(np.identity(num_classes) * p_cf)
b = np.zeros([num_classes, 1])
elif mode == "identity_W":
W = np.identity(num_classes)
b = -1 * np.expand_dims(p_cf, axis=-1)
else:
assert False
all_calibrate_label_probs = list()
for label_probs in all_label_probs:
label_probs = label_probs / np.sum(label_probs) # normalize to 1
calibrate_label_probs = np.matmul(W, np.expand_dims(label_probs, axis=-1)) + b
all_calibrate_label_probs.append(calibrate_label_probs.squeeze().tolist())
return np.array(all_calibrate_label_probs)
def get_content_free_prediction(self, content_free_examples, label2id: dict):
"""Query model with content free input, return its prediction probability for each label"""
all_p_y = []
for content_free_example in content_free_examples:
content_free_prompt = content_free_example["content_free_prompt"]
p_y = [0] * len(label2id)
for answers, i in label2id.items():
prob = 0
for a in answers:
prob += np.exp(self.get_causal_cls_prediction(content_free_prompt + " " + a, 0, echo=True, num_log_probs=1)['choices'][0]['logprobs']['token_logprobs'][-1])
p_y[i] = prob
all_p_y.append(p_y)
p_y = np.mean(np.array(all_p_y), axis=0)
p_y = p_y / np.sum(p_y) # normalize
return p_y
def get_causal_cls_prediction(self, prompt, l=10, num_log_probs=None, echo=False):
''' This function runs GPT-2 locally but places the outputs into an json that looks just like the one
provided by the OpenAI API. '''
if isinstance(prompt, str):
prompt = [prompt] # the code below assumes a list
input_ids = self.tokenizer.batch_encode_plus(prompt, return_tensors="pt", padding=True)
if l + len(input_ids['input_ids'][0]) > 1020:
m = l + len(input_ids['input_ids'][0]) - 1024
input_ids['input_ids'] = torch.Tensor([input_ids['input_ids'][0][m:].numpy()]).long()
input_ids['attention_mask'] = torch.Tensor([input_ids['attention_mask'][0][m:].numpy()]).long()
# greedily generate l tokens
# print("l=", l)
if l > 0:
# the generate function can handle left padded inputs automatically in HF
# total_sequences is now the input + possible generated output
# print("l + len(input_ids[input_ids][0]=", l + len(input_ids['input_ids'][0]))
total_sequences = self.model.generate(
input_ids=input_ids['input_ids'].to(self.model.device),
attention_mask=input_ids['attention_mask'].to(self.model.device),
max_length=l + len(input_ids['input_ids'][0]),
do_sample=False
)
else:
assert echo == True and l == 0
total_sequences = input_ids['input_ids'].to(self.model.device)
# print("="*50)
# print("total_sequences=", total_sequences) [batch, len+l]
# print("total_sequences.shape=", total_sequences.shape)
# they want the probs of the top tokens
if num_log_probs is not None:
# we are left padding, so we need to adjust the position IDs
attention_mask = (total_sequences != 50256).float()
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
# get the logits for the context and the next l tokens
logits = self.model.forward(input_ids=total_sequences, attention_mask=attention_mask, position_ids=position_ids, return_dict=True).logits.detach().cpu()
if not echo:
# get the top tokens and probs for the generated l tokens
probs = torch.softmax(logits[:,-l-1:], dim=2).cpu()
else:
# get the top tokens and probs for the context and the generated l tokens
probs = torch.softmax(logits, dim=2).cpu()
top_probs, top_tokens = torch.topk(probs, k=num_log_probs)
logprobs = torch.log(probs)
top_log_probs = torch.log(top_probs)
# print("top_log_probs=", top_log_probs)
# print("top_log_probs.shape=", top_log_probs.shape) # [1, 2, 100] [batch, 2, api_num_log_prob]
# create the return value to resemble OpenAI
return_json = {}
choices = []
# print("="*50)
for batch_id in range(len(prompt)):
curr_json = {}
# text is just the optional context and next l tokens
if not echo:
curr_json['text'] = self.tokenizer.decode(total_sequences[batch_id][-l:], skip_special_tokens=True)
else:
curr_json['text'] = self.tokenizer.decode(total_sequences[batch_id], skip_special_tokens=True)
# fill the return json with the top tokens and probs to match the OpenAI return value.
if num_log_probs is not None:
curr_json['logprobs'] = {}
curr_json['logprobs']['top_logprobs'] = []
curr_json['logprobs']['token_logprobs'] = []
curr_json['logprobs']['tokens'] = []
if not echo:
# cutoff the -1 here because the probs are shifted one over for LMs
for current_element_top_log_probs, current_element_top_tokens in zip(top_log_probs[batch_id][:-1], top_tokens[batch_id][:-1]):
# tokens is a list of the top token at each position
curr_json['logprobs']['tokens'].append(self.tokenizer.decode([current_element_top_tokens[0]]))
# token_logprobs is a list of the logprob of the top token at each position
curr_json['logprobs']['token_logprobs'].append(current_element_top_log_probs[0].item())
# top_logprobs is a list of dicts for the top K tokens. with each entry being {'token_name': log_prob}
temp = {}
for log_prob, token in zip(current_element_top_log_probs, current_element_top_tokens):
temp[self.tokenizer.decode(token.item())] = log_prob.item()
curr_json['logprobs']['top_logprobs'].append(temp)
else:
# same as not above but small tweaks
# we add null to the front because for the GPT models, they have null probability for the first token
# (for some reason they don't have an beginning of sentence token)
curr_json['logprobs']['top_logprobs'].append('null')
# cutoff the -1 here because the probs are shifted one over for LMs
for index, (current_element_top_log_probs, current_element_top_tokens) in enumerate(zip(top_log_probs[batch_id][:-1], top_tokens[batch_id][:-1])):
# skip padding tokens
if total_sequences[batch_id][index].item() == 50256:
continue
temp = {}
for log_prob, token in zip(current_element_top_log_probs, current_element_top_tokens):
temp[self.tokenizer.decode(token.item())] = log_prob.item()
curr_json['logprobs']['top_logprobs'].append(temp)
for index in range(len(probs[batch_id])):
curr_json['logprobs']['tokens'].append(self.tokenizer.decode([total_sequences[batch_id][index]]))
curr_json['logprobs']['token_logprobs'].append('null')
for index, log_probs_token_position_j in enumerate(logprobs[batch_id][:-1]):
# probs are left shifted for LMs
curr_json['logprobs']['token_logprobs'].append(log_probs_token_position_j[total_sequences[batch_id][index+1]])
choices.append(curr_json)
# print("curr_json=", curr_json)
'''
e.g.,
num_tokens_to_predict=1
curr_json= {
'text': ' I', # 当前生成的top词
'logprobs': {'top_logprobs': [{' I': -3.4267239570617676, '\n': -3.5073862075805664, ...], # top100词及其socre
'token_logprobs': [-3.4267239570617676], # 当前top词的score
'tokens': [' I']}
}
num_tokens_to_predict=2
curr_json= {
'text': '\nThe', # 如果指定生成两个词,则为两个词
'logprobs': {'top_logprobs': [ # 两个位置对应的预测的score
{'\n': -3.186706304550171, '\xa0': -3.222092390060425, ' We': -6.781067848205566, ...},
{'The': -2.5251243114471436, '"': -2.857935667037964, ...],
'token_logprobs': [-3.186706304550171, -2.5251243114471436], # 生成的词的score
'tokens': ['\n', 'The']}
}
'''
return_json['choices'] = choices
# print("="*50)
# print("return_json=", return_json)
return return_json
|