File size: 10,437 Bytes
45311fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
# -*- coding: utf-8 -*-
# @Time    : 2023/3/20 8:02 p.m.
# @Author  : Jianing Wang
# @File    : calibrate.py

import os
import numpy as np
import torch

"""
Use LM to classify label words for calibrating CLS
"""
class CLSCalibrator:
    pass

"""
Use Causal LM to generate label words for calibrating CLS
e.g., use gpt2 to generate a label word with in-context prompts, and calibrate for the prediction.
Paper: http://proceedings.mlr.press/v139/zhao21c.html
"""
class CausalCLSCalibrator:

    def __init__(self, model, tokenizer) -> None:
        self.model = model
        self.tokenizer = tokenizer

    def calibrate(self, all_label_probs, content_free_examples, label2id, mode="diagonal_W"):
        """Perform calibration for de-biasing and obtain calibrated probability"""
        p_cf = self.get_content_free_prediction(content_free_examples, label2id)

        num_classes = all_label_probs.shape[1]
        if p_cf is None:
            # do not calibrate
            W = np.identity(num_classes)
            b = np.zeros([num_classes, 1])
        else:
            # calibrate
            if mode == "diagonal_W":
                W = np.linalg.inv(np.identity(num_classes) * p_cf)
                b = np.zeros([num_classes, 1])
            elif mode == "identity_W":
                W = np.identity(num_classes)
                b = -1 * np.expand_dims(p_cf, axis=-1)
            else:
                assert False


        all_calibrate_label_probs = list()
        for label_probs in all_label_probs:
            label_probs = label_probs / np.sum(label_probs) # normalize to 1
            calibrate_label_probs = np.matmul(W, np.expand_dims(label_probs, axis=-1)) + b
            all_calibrate_label_probs.append(calibrate_label_probs.squeeze().tolist())
        return np.array(all_calibrate_label_probs)


    def get_content_free_prediction(self, content_free_examples, label2id: dict):
        """Query model with content free input, return its prediction probability for each label"""

        all_p_y = []
        for content_free_example in content_free_examples:

            content_free_prompt = content_free_example["content_free_prompt"]
            p_y = [0] * len(label2id)
            for answers, i in label2id.items():
                prob = 0
                for a in answers:
                    prob += np.exp(self.get_causal_cls_prediction(content_free_prompt + " " + a, 0, echo=True, num_log_probs=1)['choices'][0]['logprobs']['token_logprobs'][-1])
                p_y[i] = prob
            all_p_y.append(p_y)

        p_y = np.mean(np.array(all_p_y), axis=0)
        p_y = p_y / np.sum(p_y) # normalize
        return p_y


    def get_causal_cls_prediction(self, prompt, l=10, num_log_probs=None, echo=False):
        ''' This function runs GPT-2 locally but places the outputs into an json that looks just like the one
        provided by the OpenAI API. '''
        if isinstance(prompt, str):
            prompt = [prompt] # the code below assumes a list
        input_ids = self.tokenizer.batch_encode_plus(prompt, return_tensors="pt", padding=True)

        if l + len(input_ids['input_ids'][0]) > 1020:
            m = l + len(input_ids['input_ids'][0]) - 1024
            input_ids['input_ids'] = torch.Tensor([input_ids['input_ids'][0][m:].numpy()]).long()
            input_ids['attention_mask'] = torch.Tensor([input_ids['attention_mask'][0][m:].numpy()]).long()

        # greedily generate l tokens
        # print("l=", l)
        if l > 0:
            # the generate function can handle left padded inputs automatically in HF
            # total_sequences is now the input + possible generated output
            # print("l + len(input_ids[input_ids][0]=", l + len(input_ids['input_ids'][0]))
            total_sequences = self.model.generate(
                input_ids=input_ids['input_ids'].to(self.model.device),
                attention_mask=input_ids['attention_mask'].to(self.model.device),
                max_length=l + len(input_ids['input_ids'][0]),
                do_sample=False
                )
        else:
            assert echo == True and l == 0
            total_sequences = input_ids['input_ids'].to(self.model.device)
        # print("="*50)
        # print("total_sequences=", total_sequences) [batch, len+l]
        # print("total_sequences.shape=", total_sequences.shape)

        # they want the probs of the top tokens
        if num_log_probs is not None:
            # we are left padding, so we need to adjust the position IDs
            attention_mask = (total_sequences != 50256).float()
            position_ids = attention_mask.long().cumsum(-1) - 1
            position_ids.masked_fill_(attention_mask == 0, 1)
            # get the logits for the context and the next l tokens
            logits = self.model.forward(input_ids=total_sequences, attention_mask=attention_mask, position_ids=position_ids, return_dict=True).logits.detach().cpu()
            if not echo:
                # get the top tokens and probs for the generated l tokens
                probs = torch.softmax(logits[:,-l-1:], dim=2).cpu()
            else:
                # get the top tokens and probs for the context and the generated l tokens
                probs = torch.softmax(logits, dim=2).cpu()
            top_probs, top_tokens = torch.topk(probs, k=num_log_probs)
            logprobs = torch.log(probs)
            top_log_probs = torch.log(top_probs)
            # print("top_log_probs=", top_log_probs)
            # print("top_log_probs.shape=", top_log_probs.shape) # [1, 2, 100] [batch, 2, api_num_log_prob]

        # create the return value to resemble OpenAI
        return_json = {}
        choices = []
        # print("="*50)
        for batch_id in range(len(prompt)):
            curr_json = {}
            # text is just the optional context and next l tokens
            if not echo:
                curr_json['text'] = self.tokenizer.decode(total_sequences[batch_id][-l:], skip_special_tokens=True)
            else:
                curr_json['text'] = self.tokenizer.decode(total_sequences[batch_id], skip_special_tokens=True)

            # fill the return json with the top tokens and probs to match the OpenAI return value.
            if num_log_probs is not None:
                curr_json['logprobs'] = {}
                curr_json['logprobs']['top_logprobs'] = []
                curr_json['logprobs']['token_logprobs'] = []
                curr_json['logprobs']['tokens'] = []
                if not echo:
                    # cutoff the -1 here because the probs are shifted one over for LMs
                    for current_element_top_log_probs, current_element_top_tokens in zip(top_log_probs[batch_id][:-1], top_tokens[batch_id][:-1]):
                        # tokens is a list of the top token at each position
                        curr_json['logprobs']['tokens'].append(self.tokenizer.decode([current_element_top_tokens[0]]))
                        # token_logprobs is a list of the logprob of the top token at each position
                        curr_json['logprobs']['token_logprobs'].append(current_element_top_log_probs[0].item())
                        # top_logprobs is a list of dicts for the top K tokens. with each entry being {'token_name': log_prob}
                        temp = {}
                        for log_prob, token in zip(current_element_top_log_probs, current_element_top_tokens):
                            temp[self.tokenizer.decode(token.item())] = log_prob.item()
                        curr_json['logprobs']['top_logprobs'].append(temp)
                else:
                    # same as not above but small tweaks
                    # we add null to the front because for the GPT models, they have null probability for the first token
                    # (for some reason they don't have an beginning of sentence token)
                    curr_json['logprobs']['top_logprobs'].append('null')
                    # cutoff the -1 here because the probs are shifted one over for LMs
                    for index, (current_element_top_log_probs, current_element_top_tokens) in enumerate(zip(top_log_probs[batch_id][:-1], top_tokens[batch_id][:-1])):
                        # skip padding tokens
                        if total_sequences[batch_id][index].item() == 50256:
                            continue
                        temp = {}
                        for log_prob, token in zip(current_element_top_log_probs, current_element_top_tokens):
                            temp[self.tokenizer.decode(token.item())] = log_prob.item()
                        curr_json['logprobs']['top_logprobs'].append(temp)
                    for index in range(len(probs[batch_id])):
                        curr_json['logprobs']['tokens'].append(self.tokenizer.decode([total_sequences[batch_id][index]]))
                    curr_json['logprobs']['token_logprobs'].append('null')
                    for index, log_probs_token_position_j in enumerate(logprobs[batch_id][:-1]):
                        # probs are left shifted for LMs
                        curr_json['logprobs']['token_logprobs'].append(log_probs_token_position_j[total_sequences[batch_id][index+1]])

            choices.append(curr_json)
            # print("curr_json=", curr_json)
            '''
            e.g.,
            num_tokens_to_predict=1
            curr_json= {
                'text': ' I', # 当前生成的top词
                'logprobs': {'top_logprobs': [{' I': -3.4267239570617676, '\n': -3.5073862075805664, ...], # top100词及其socre
                'token_logprobs': [-3.4267239570617676], # 当前top词的score
                'tokens': [' I']}
            }
            num_tokens_to_predict=2
            curr_json= {
                'text': '\nThe', # 如果指定生成两个词,则为两个词
                'logprobs': {'top_logprobs': [ # 两个位置对应的预测的score
                    {'\n': -3.186706304550171, '\xa0': -3.222092390060425, ' We': -6.781067848205566, ...},
                    {'The': -2.5251243114471436, '"': -2.857935667037964, ...],
                'token_logprobs': [-3.186706304550171, -2.5251243114471436], # 生成的词的score
                'tokens': ['\n', 'The']}
            }
            '''
        return_json['choices'] = choices
        # print("="*50)
        # print("return_json=", return_json)
        return return_json