Spaces:
Running
Running
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
# A simple MLP layer | |
class FeedForwardNetwork(nn.Module): | |
def __init__(self, input_size, hidden_size, output_size, dropout_rate=0): | |
super(FeedForwardNetwork, self).__init__() | |
self.dropout_rate = dropout_rate | |
self.linear1 = nn.Linear(input_size, hidden_size) | |
self.linear2 = nn.Linear(hidden_size, output_size) | |
def forward(self, x): | |
x_proj = F.dropout(F.relu(self.linear1(x)), p=self.dropout_rate, training=self.training) | |
x_proj = self.linear2(x_proj) | |
return x_proj | |
# Span Prediction for Start Position | |
class PoolerStartLogits(nn.Module): | |
def __init__(self, hidden_size, num_classes): | |
super(PoolerStartLogits, self).__init__() | |
self.dense = nn.Linear(hidden_size, num_classes) | |
def forward(self, hidden_states, p_mask=None): | |
x = self.dense(hidden_states) | |
return x | |
# Span Prediction for End Position | |
class PoolerEndLogits(nn.Module): | |
def __init__(self, hidden_size, num_classes): | |
super(PoolerEndLogits, self).__init__() | |
self.dense_0 = nn.Linear(hidden_size, hidden_size) | |
self.activation = nn.Tanh() | |
self.LayerNorm = nn.LayerNorm(hidden_size) | |
self.dense_1 = nn.Linear(hidden_size, num_classes) | |
def forward(self, hidden_states, start_positions=None, p_mask=None): | |
x = self.dense_0(torch.cat([hidden_states, start_positions], dim=-1)) | |
x = self.activation(x) | |
x = self.LayerNorm(x) | |
x = self.dense_1(x) | |
return x | |