import os import torch import numpy as np import torchaudio import yaml from . import asteroid_test def get_conf(): conf_filterbank = { 'n_filters': 64, 'kernel_size': 16, 'stride': 8 } conf_masknet = { 'in_chan': 64, 'n_src': 2, 'out_chan': 64, 'ff_hid': 256, 'ff_activation': "relu", 'norm_type': "gLN", 'chunk_size': 100, 'hop_size': 50, 'n_repeats': 2, 'mask_act': 'sigmoid', 'bidirectional': True, 'dropout': 0 } return conf_filterbank, conf_masknet def load_dpt_model(): print('Load Separation Model...') now_path = os.path.split(os.path.realpath(__file__))[0] conf_filterbank, conf_masknet = get_conf() model_path = os.path.join(now_path, "trained_model/train_dptnet_aishell_partOverlap_B2_300epoch_quan-int8.p") model = getattr(asteroid_test, "DPTNet")(**conf_filterbank, **conf_masknet) model = torch.quantization.quantize_dynamic(model, {torch.nn.LSTM, torch.nn.Linear}, dtype=torch.qint8) state_dict = torch.load(model_path, map_location="cpu") model.load_state_dict(state_dict) model.eval() return model def dpt_sep_process(wav_path, model=None, outfilename=None): if model is None: model = load_model() x, sr = torchaudio.load(wav_path) x = x.cpu() with torch.no_grad(): est_sources = model(x) # shape: (1, 2, T) # 確保 est_sources 是 (1, 2, T),再拆分 est_sources = est_sources.squeeze(0) # shape: (2, T) sep_1, sep_2 = est_sources # 拆成兩個 (T, ) 的 tensor # 正規化 max_abs = x[0].abs().max().item() sep_1 = sep_1 * max_abs / sep_1.abs().max().item() sep_2 = sep_2 * max_abs / sep_2.abs().max().item() # 增加 channel 維度,變為 (1, T) sep_1 = sep_1.unsqueeze(0) sep_2 = sep_2.unsqueeze(0) if outfilename is not None: torchaudio.save(outfilename.replace('.wav', '_sep1.wav'), sep_1, sr) torchaudio.save(outfilename.replace('.wav', '_sep2.wav'), sep_2, sr) torchaudio.save(outfilename.replace('.wav', '_mix.wav'), x, sr) else: torchaudio.save(wav_path.replace('.wav', '_sep1.wav'), sep_1, sr) torchaudio.save(wav_path.replace('.wav', '_sep2.wav'), sep_2, sr) # def dpt_sep_process(wav_path, model=None, outfilename=None): # if model == None: # model = load_model() # x, sr = torchaudio.load(wav_path) # x = x.cpu() # with torch.no_grad(): # est_sources = model(x) # est_sources_np = est_sources.squeeze(0) # sep_1, sep_2 = est_sources_np # sep_1 = sep_1 * x[0].abs().max().item() / sep_1.abs().max().item() # sep_2 = sep_2 * x[0].abs().max().item() / sep_2.abs().max().item() # if outfilename != None: # torchaudio.save(outfilename.replace('.wav', '_sep1.wav'), sep_1, sr) # torchaudio.save(outfilename.replace('.wav', '_sep2.wav'), sep_2, sr) # torchaudio.save(outfilename.replace('.wav', '_mix.wav'), x, sr) # else: # torchaudio.save(wav_path.replace('.wav', '_sep1.wav'), sep_1, sr) # torchaudio.save(wav_path.replace('.wav', '_sep2.wav'), sep_2, sr) if __name__ == '__main__': print("This module should be used via Flask or Gradio.")