# DPTNet_quant_sep.py import warnings warnings.filterwarnings("ignore", message="Failed to initialize NumPy: _ARRAY_API not found") import os import torch import numpy as np import torchaudio from huggingface_hub import hf_hub_download # 動態導入 asteroid_test 中的 DPTNet try: from . import asteroid_test except ImportError as e: raise ImportError("無法載入 asteroid_test 模組,請確認該模組與訓練時相同") from e torchaudio.set_audio_backend("sox_io") def get_conf(): """取得模型參數設定""" conf_filterbank = { 'n_filters': 64, 'kernel_size': 16, 'stride': 8 } conf_masknet = { 'in_chan': 64, 'n_src': 2, 'out_chan': 64, 'ff_hid': 256, 'ff_activation': "relu", 'norm_type': "gLN", 'chunk_size': 100, 'hop_size': 50, 'n_repeats': 2, 'mask_act': 'sigmoid', 'bidirectional': True, 'dropout': 0 } return conf_filterbank, conf_masknet def load_dpt_model(): print('Load Separation Model...') speech_sep_token = os.getenv("SpeechSeparation") if not speech_sep_token: raise EnvironmentError("環境變數 SpeechSeparation 未設定!") model_path = hf_hub_download( repo_id="DeepLearning101/speech-separation", filename="train_dptnet_aishell_partOverlap_B2_300epoch_quan-int8.p", token=speech_sep_token ) conf_filterbank, conf_masknet = get_conf() try: model_class = getattr(asteroid_test, "DPTNet") model = model_class(**conf_filterbank, **conf_masknet) except Exception as e: raise RuntimeError("模型結構錯誤:請確認 asteroid_test.py 是否與訓練時相同") from e model = torch.quantization.quantize_dynamic( model, {torch.nn.LSTM, torch.nn.Linear}, dtype=torch.qint8 ) state_dict = torch.load(model_path, map_location="cpu") own_state = model.state_dict() # 只保留是 torch.Tensor 的 key-value pairs filtered_state_dict = {} for k, v in state_dict.items(): if k in own_state: if isinstance(v, torch.Tensor) and isinstance(own_state[k], torch.Tensor): if v.shape == own_state[k].shape: filtered_state_dict[k] = v else: print(f"Skip '{k}': shape mismatch") else: print(f"Skip '{k}': not a tensor") missing_keys, unexpected_keys = model.load_state_dict(filtered_state_dict, strict=False) if missing_keys: print("⚠️ Missing keys:", missing_keys) if unexpected_keys: print("ℹ️ Unexpected keys:", unexpected_keys) model.eval() return model def dpt_sep_process(wav_path, model=None, outfilename=None): """進行語音分離處理""" if model is None: model = load_dpt_model() x, sr = torchaudio.load(wav_path) x = x.cpu() with torch.no_grad(): est_sources = model(x) # shape: (1, 2, T) est_sources = est_sources.squeeze(0) # shape: (2, T) sep_1, sep_2 = est_sources # 拆成兩個 (T,) 的 tensor # 正規化 max_abs = x[0].abs().max().item() sep_1 = sep_1 * max_abs / sep_1.abs().max().item() sep_2 = sep_2 * max_abs / sep_2.abs().max().item() # 增加 channel 維度,變為 (1, T) sep_1 = sep_1.unsqueeze(0) sep_2 = sep_2.unsqueeze(0) # 儲存結果 if outfilename is not None: torchaudio.save(outfilename.replace('.wav', '_sep1.wav'), sep_1, sr) torchaudio.save(outfilename.replace('.wav', '_sep2.wav'), sep_2, sr) torchaudio.save(outfilename.replace('.wav', '_mix.wav'), x, sr) else: torchaudio.save(wav_path.replace('.wav', '_sep1.wav'), sep_1, sr) torchaudio.save(wav_path.replace('.wav', '_sep2.wav'), sep_2, sr) if __name__ == '__main__': print("This module should be used via Flask or Gradio.")