|
from flask import Flask, request, jsonify |
|
from huggingface_hub import InferenceClient |
|
|
|
client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.1") |
|
|
|
app = Flask(__name__) |
|
|
|
file_path = "mentor.txt" |
|
with open(file_path, "r") as file: |
|
mentors_data = file.read() |
|
|
|
@app.route('/') |
|
def home(): |
|
return jsonify({"message": "Welcome to the Recommendation API!"}) |
|
|
|
import random |
|
|
|
def format_prompt(message): |
|
|
|
user_prompt = "UserPrompt" |
|
bot_response = "BotResponse" |
|
|
|
return f"<s>[INST] {user_prompt} [/INST] {bot_response}</s> [INST] {message} [/INST]" |
|
|
|
|
|
|
|
@app.route('/get_course', methods=['POST']) |
|
def recommend(): |
|
temperature = 0.9 |
|
max_new_tokens = 256 |
|
top_p = 0.95 |
|
repetition_penalty = 1.0 |
|
|
|
|
|
content = request.json |
|
user_degree = content.get('degree') |
|
user_stream = content.get('stream') |
|
user_semester = content.get('semester') |
|
|
|
generate_kwargs = dict( |
|
temperature=temperature, |
|
max_new_tokens=max_new_tokens, |
|
top_p=top_p, |
|
repetition_penalty=repetition_penalty, |
|
do_sample=True, |
|
seed=42, |
|
) |
|
prompt = f""" prompt: |
|
You need to act like as recommendation engine for course recommendation for a student based on below details. |
|
Degree: {user_degree} |
|
Stream: {user_stream} |
|
Current Semester: {user_semester} |
|
Based on above details recommend the courses that relate to the above details |
|
Note: Output should be list in below format: |
|
[course1, course2, course3,...] |
|
Return only answer not prompt and unnecessary stuff, also dont add any special characters or punctuation marks |
|
""" |
|
formatted_prompt = format_prompt(prompt) |
|
|
|
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=False, details=False, return_full_text=False) |
|
return jsonify({"ans": stream}) |
|
|
|
@app.route('/get_mentor', methods=['POST']) |
|
def mentor(): |
|
temperature = 0.9 |
|
max_new_tokens = 256 |
|
top_p = 0.95 |
|
repetition_penalty = 1.0 |
|
|
|
content = request.json |
|
user_degree = content.get('degree') |
|
user_stream = content.get('stream') |
|
user_semester = content.get('semester') |
|
courses = content.get('courses') |
|
|
|
temperature = float(temperature) |
|
if temperature < 1e-2: |
|
temperature = 1e-2 |
|
top_p = float(top_p) |
|
|
|
generate_kwargs = dict( |
|
temperature=temperature, |
|
max_new_tokens=max_new_tokens, |
|
top_p=top_p, |
|
repetition_penalty=repetition_penalty, |
|
do_sample=True, |
|
seed=42, |
|
) |
|
prompt = f""" prompt: |
|
You need to act like as recommendataion engine for mentor recommendation for student based on below details also the list of mentors with their experience is attached. |
|
Degree: {user_degree} |
|
Stream: {user_stream} |
|
Current Semester: {user_semester} |
|
courses opted:{courses} |
|
Mentor list= {mentors_data} |
|
Based on above details recommend the mentor that realtes to above details |
|
Note: Output should be list in below format: |
|
[mentor1,mentor2,mentor3,...] |
|
Return only answer not prompt and unnecessary stuff, also dont add any special characters or punctuation marks |
|
""" |
|
formatted_prompt = format_prompt(prompt) |
|
|
|
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=False, details=False, return_full_text=False) |
|
return jsonify({"ans": stream}) |
|
|
|
if __name__ == '__main__': |
|
app.run(debug=True) |
|
|