from flask import Flask, request, jsonify from huggingface_hub import InferenceClient import gradio as gr client = InferenceClient( "mistralai/Mistral-7B-Instruct-v0.1" ) app = Flask(__name__) file_path = "mentor.txt" with open(file_path, "r") as file: mentors_data = file.read() @app.route('/') def home(): return jsonify({"message": "Welcome to the Recommendation API!"}) def format_prompt(message): prompt = "" prompt += f"[INST] {message} [/INST]" prompt += "" return prompt @app.route('/recommend', methods=['POST']) def recommend(temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0,): content = request.json user_degree = content.get('degree') user_stream = content.get('stream') user_semester = content.get('semester') temperature = float(temperature) if temperature < 1e-2: temperature = 1e-2 top_p = float(top_p) generate_kwargs = dict( temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, do_sample=True, seed=42, ) prompt = f""" prompt: You need to act like as recommendataion engine for course recommendation for student based on below details. Degree: {user_degree} Stream: {user_stream} Current Semester: {user_semester} Based on above details recommend the courses that realtes to above details Note: Output should bevalid json format in below format: {{"course1:course_name,course2:course_name,course3:course_name,...}} """ formatted_prompt = format_prompt(prompt) stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) output = "" for response in stream: output += response.token.text yield output return jsonify({"ans":output}) @app.route('/get_mentor', methods=['POST']) def mentor(temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0,): content = request.json user_degree = content.get('degree') user_stream = content.get('stream') user_semester = content.get('semester') courses = content.get('courses') temperature = float(temperature) if temperature < 1e-2: temperature = 1e-2 top_p = float(top_p) generate_kwargs = dict( temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, do_sample=True, seed=42, ) prompt = f""" prompt: You need to act like as recommendataion engine for mentor recommendation for student based on below details also the list of mentors with their experience is attached. Degree: {user_degree} Stream: {user_stream} Current Semester: {user_semester} courses opted:{courses} Mentor list= {mentors_data} Based on above details recommend the mentor that realtes to above details Note: Output should be valid json format in below format: {{"mentor1:mentor_name,mentor2:mentor_name,mentor3:mentor_name,...}} """ formatted_prompt = format_prompt(prompt) stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) output = "" for response in stream: output += response.token.text yield output return jsonify({"ans":output}) if __name__ == '__main__': app.run(debug=True)