Spaces:
Running
Running
File size: 8,113 Bytes
18b090f 500f3c8 18b090f 500f3c8 3ce50f4 18b090f 500f3c8 18b090f 43eb109 18b090f 753aacd 18b090f 500f3c8 18b090f 3ce50f4 18b090f 500f3c8 18b090f 500f3c8 18b090f 500f3c8 18b090f 500f3c8 86f71f5 500f3c8 18b090f 500f3c8 18b090f 500f3c8 18b090f 500f3c8 18b090f 500f3c8 f44c5b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
import os
from dotenv import load_dotenv, find_dotenv
import gradio as gr
import openai
import requests
from PIL import Image
from io import BytesIO
# load the secrets if running locally
_ = load_dotenv(find_dotenv(filename="secrets.env", raise_error_if_not_found=False))
# Global variable
AUTH_USERNAME = os.environ["AUTH_USERNAME"]
AUTH_PASSWORD = os.environ["AUTH_PASSWORD"]
# Load credentials
openai.api_key = os.environ["OPENAI_API_KEY"]
SYSTEM_PROMPT = "You are a helpful assistant and do your best to answer the user's questions.\
You do not make up answers."
# define the function that will make the API calls for the catbot
def chatBotCompletionApiCall(prompt:str, temperature = 0.7, max_tokens = 1024, model="GPT-3.5", stream=True):
if model == "GPT-3.5":
model = "gpt-3.5-turbo-0125"
else:
model = "gpt-4-turbo-preview"
# make the API call with the given parameter
response = openai.chat.completions.create(
model=model,
messages=prompt,
max_tokens = max_tokens,
temperature=temperature,
stream=stream,
)
# return the completed text
if stream:
for chunk in response:
output = chunk.choices[0].delta.content # when Stream is set to True
yield output
else:
output = response.choices[0].message.content # when Stream is set to False
# Helper function: format the prompt to include history for fhe chatbot
def chatBotFormatPrompt(newMsg:str, chatHistory, instruction):
# start with the system prompt
messages = []
messages.append({
"role": "system",
"content": instruction
})
# add the history
for turn in chatHistory:
# retrieve the user and assistant messages from history
userMsg, AssistantMsg = turn
# add the user message
messages.append({
"role": "user",
"content": userMsg
})
# add the assistant message
messages.append({
"role": "assistant",
"content": AssistantMsg
})
# add the last message that needs to be answer
messages.append({
"role": "user",
"content": newMsg
})
# return the formated messages
return messages
# def the response function (to get the answer as one block after generation)
def responseChatBot(newMsg:str, chatHistory, instruction, temperature, max_tokens, model, stream=False):
prompt = chatBotFormatPrompt(newMsg=newMsg, chatHistory=chatHistory, instruction=instruction)
response = chatBotCompletionApiCall(prompt=prompt, temperature=temperature, max_tokens=max_tokens, model=model)
chatHistory.append([newMsg, response])
return "", chatHistory
# def the streamResponse function, to stream the results as they are generated
def streamResponseChatBot(newMsg:str, chatHistory, instruction, temperature, max_tokens, model, stream = True):
chatHistory.append([newMsg, ""])
prompt = chatBotFormatPrompt(newMsg=newMsg, chatHistory=chatHistory, instruction=instruction)
stream = chatBotCompletionApiCall(prompt=prompt, temperature=temperature, max_tokens=max_tokens, model=model)
for chunk in stream:
if chunk != None:
chatHistory[-1][1] += chunk
yield "", chatHistory
else:
return "", chatHistory
# helper function for image generation
def generateImageOpenAI(prompt, size = "1024x1024", quality = "standard", model = "dall-e-3", n=1):
'''
Make an API call to OpenAI's DALL-E model and return the generated image in PIL format
'''
print("request sent")
openAIresponse = openai.images.generate(model=model, prompt=prompt,size=size,quality=quality,n=n,)
image_url = openAIresponse.data[0].url
# get the image in Bytes format
imageResponse = requests.get(url=image_url)
imageBytes = imageResponse.content
# convert it to PIL format
image = Image.open(BytesIO(imageBytes))
print("image received!")
# return the result
return image
# Define some components
model = gr.Dropdown(
choices=["GPT-3.5", "GPT-4"],
value="GPT-3.5",
multiselect=False,
label="Model",
info="Choose the model you want to chat with.\nGo easy on GPT-4: it costs 500 times more than GPT 3.5!"
)
instruction = gr.Textbox(
value=SYSTEM_PROMPT,
label="System instructions",
lines=4,)
temperature = gr.Slider(
minimum=0,
maximum=2,
step=0.1,
value=0.7,
label="Temperature",
info="The higher, the more random the results will be"
)
max_token = gr.Slider(
minimum=64,
maximum=2048,
step=64,
value=1024,
label="Max Token",
info="Maximum number of token the model will take into consideration"
)
# Components for Image generator
genImage = gr.Image(
label="Result",
type="pil",
render = False
) # Box for generated image
# def helper function to update and render the component
def generateAndRender(prompt:str, size, quality,):
'''
Send the request to the API endpoint and update the components. Outputs:
- oldPrompt
- genImage
- promptBox
'''
# get the image
image = generateImageOpenAI(prompt, size, quality)
# update the components
oldPrompt = gr.Textbox(value=prompt, label = "Your prompt", render=True)
genImage = gr.Image(value=image, label="Result", type="pil", render = True)
promptBox = gr.Textbox(label="Enter your prompt", lines=3)
# return the components
return oldPrompt, genImage, promptBox
# Build the app
with gr.Blocks(theme='Insuz/Mocha', css="style.css") as app:
# First tab: chatbot
with gr.Tab(label="ChatBot"):
with gr.Row():
with gr.Column(scale = 8, elem_classes=["float-left"]):
gr.Markdown("# Private GPT")
gr.Markdown("This chatbot is powered by the openAI GPT series.\
The default model is `GPT-3.5`, but `GPT-4` can be selected in the advanced options.\
\nAs it uses the openAI API, user data is not used to train openAI models (see their official [website](https://help.openai.com/en/articles/5722486-how-your-data-is-used-to-improve-model-performance)).")
chatbot = gr.Chatbot() # Associated variable: chatHistory
msg = gr.Textbox(label="Message")
with gr.Row():
with gr.Column(scale=4):
Button = gr.Button(value="Submit")
with gr.Column(scale=4):
clearButton = gr.ClearButton([chatbot, msg])
msg.submit(
fn=streamResponseChatBot,
inputs=[msg, chatbot, instruction, temperature, max_token, model],
outputs=[msg, chatbot]
)
Button.click(
fn=streamResponseChatBot,
inputs=[msg, chatbot, instruction, temperature, max_token, model],
outputs=[msg, chatbot]
)
with gr.Column(scale = 1, elem_classes=["float-right"]):
with gr.Accordion(label="Advanced options", open=True):
model.render()
instruction.render()
temperature.render()
max_token.render()
# Second Tab: image generation
with gr.Tab(label="Image Creation"):
# Title and description
gr.Markdown("# Image generation")
gr.Markdown("Powered by OpenAI's `DALL-E 3` Model under the hood.\n\
You can change the `size` as well as the `quality`.")
# First row: prompt
with gr.Row():
prompt = gr.Textbox(label="Enter your prompt", lines=3)
# Second row: allow for advanced customization
with gr.Accordion(label="Advanced option", open=False): # should not be visible by default
# Three columns of advanced options
with gr.Row():
with gr.Column():
size = gr.Dropdown(
choices = ["1024x1024", "1024x1792","1792x1024"],
value = "1024x1024",
info = "Choose the size of the image",
)
with gr.Column():
quality = gr.Dropdown(
choices = ["standard", "hd"],
value = "standard",
info="Define the quality of the image",
)
model = gr.Text(value="dall-e-3", render=False)
n = gr.Text(value=1, render=False)
# Button
# Submit and clear
with gr.Row():
with gr.Column():
button = gr.Button(value="submit", min_width=30, )
with gr.Column():
clearImageButton = gr.ClearButton(components=[prompt, genImage])
# Generated Image
genImage.render()
# Not rendered - logic of the app
button.click(
fn=generateImageOpenAI,
inputs=[prompt, size, quality],
outputs=[genImage],
)
prompt.submit(
fn=generateImageOpenAI,
inputs=[prompt, size, quality],
outputs=[genImage],
)
gr.close_all()
app.queue().launch(auth=(AUTH_USERNAME, AUTH_PASSWORD))
# app.queue().launch(share=False)
|