Spaces:
Sleeping
Sleeping
Commit
·
7eaa9e0
1
Parent(s):
2ec9cfb
Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from dotenv import load_dotenv
|
| 2 |
+
import streamlit as st
|
| 3 |
+
import os
|
| 4 |
+
from PyPDF2 import PdfReader
|
| 5 |
+
from langchain.text_splitter import CharacterTextSplitter
|
| 6 |
+
from langchain.embeddings.openai import OpenAIEmbeddings
|
| 7 |
+
from langchain.vectorstores import FAISS
|
| 8 |
+
from langchain.chains.question_answering import load_qa_chain
|
| 9 |
+
from langchain.llms import OpenAI
|
| 10 |
+
from langchain.callbacks import get_openai_callback
|
| 11 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
| 12 |
+
from langchain import HuggingFaceHub, LLMChain
|
| 13 |
+
from langchain.embeddings import HuggingFaceHubEmbeddings
|
| 14 |
+
token = os.environ['HF_TOKEN']
|
| 15 |
+
repo_id = "sentence-transformers/all-mpnet-base-v2"
|
| 16 |
+
hf = HuggingFaceHubEmbeddings(
|
| 17 |
+
repo_id=repo_id,
|
| 18 |
+
task="feature-extraction",
|
| 19 |
+
huggingfacehub_api_token= token,
|
| 20 |
+
)
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def main():
|
| 26 |
+
load_dotenv()
|
| 27 |
+
st.set_page_config(page_title="Ask your PDF")
|
| 28 |
+
st.header("Ask your PDF 💬")
|
| 29 |
+
|
| 30 |
+
# upload file
|
| 31 |
+
pdf = st.file_uploader("Upload your PDF", type="pdf")
|
| 32 |
+
|
| 33 |
+
# extract the text
|
| 34 |
+
if pdf is not None:
|
| 35 |
+
pdf_reader = PdfReader(pdf)
|
| 36 |
+
text = ""
|
| 37 |
+
for page in pdf_reader.pages:
|
| 38 |
+
text += page.extract_text()
|
| 39 |
+
|
| 40 |
+
# split into chunks
|
| 41 |
+
text_splitter = CharacterTextSplitter(
|
| 42 |
+
separator="\n",
|
| 43 |
+
chunk_size=1000,
|
| 44 |
+
chunk_overlap=200,
|
| 45 |
+
length_function=len
|
| 46 |
+
)
|
| 47 |
+
chunks = text_splitter.split_text(text)
|
| 48 |
+
|
| 49 |
+
# create embeddings
|
| 50 |
+
# embeddings = OpenAIEmbeddings()
|
| 51 |
+
# embeddings = query(chunks)
|
| 52 |
+
# embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
|
| 53 |
+
embeddings = hf
|
| 54 |
+
knowledge_base = FAISS.from_texts(chunks, embeddings)
|
| 55 |
+
|
| 56 |
+
# show user input
|
| 57 |
+
user_question = st.text_input("Ask a question about your PDF:")
|
| 58 |
+
if user_question:
|
| 59 |
+
docs = knowledge_base.similarity_search(user_question)
|
| 60 |
+
|
| 61 |
+
# llm = OpenAI()
|
| 62 |
+
|
| 63 |
+
hub_llm = HuggingFaceHub(
|
| 64 |
+
repo_id='HuggingFaceH4/zephyr-7b-beta',
|
| 65 |
+
model_kwargs={'temperature':0.01,"max_length": 2048,},
|
| 66 |
+
huggingfacehub_api_token=token)
|
| 67 |
+
llm = hub_llm
|
| 68 |
+
chain = load_qa_chain(llm, chain_type="stuff")
|
| 69 |
+
with get_openai_callback() as cb:
|
| 70 |
+
response = chain.run(input_documents=docs, question=user_question)
|
| 71 |
+
print(cb)
|
| 72 |
+
|
| 73 |
+
st.write(response)
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
if __name__ == '__main__':
|
| 77 |
+
main()
|