DeepSoft-Tech commited on
Commit
f935900
·
verified ·
1 Parent(s): 6d4cdbf

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +15 -16
app.py CHANGED
@@ -13,7 +13,7 @@ st.set_page_config(page_title="Search Engine", layout="wide")
13
 
14
  # Set up the Streamlit app title and search bar
15
  st.title("Search Engine")
16
- if st.button("Connect to Search Engine Database", type="primary")
17
  index_name = st.text_input("Enter a database name:", "")
18
  key = st.text_input("Enter a key:", "")
19
  namespace = st.text_input("Enter a table name:", "")
@@ -34,20 +34,19 @@ if st.button("Connect to Search Engine Database", type="primary")
34
  # connect to index
35
  index = pc.Index(index_name)
36
  st.write('Successfully connected to your Search Engine DB!')
37
- else:
38
- st.write("Goodbye")
39
 
40
 
41
- query = st.text_input("Enter a search query:", "")
42
-
43
- # If the user has entered a search query, search the Pinecone index with the query
44
- if query:
45
- # Upsert the embeddings for the query into the Pinecone index
46
- query_embeddings = model.encode(query).tolist()
47
- # now query
48
- xc = index.query(vector=query_embeddings, top_k=10, namespace=namespace, include_metadata=True)
49
-
50
- # Display the search results
51
- st.write(f"Search results for '{query}':")
52
- for result in xc['matches']:
53
- st.write(f"{round(result['score'], 2)}: {result['metadata']['meta_text']}")
 
13
 
14
  # Set up the Streamlit app title and search bar
15
  st.title("Search Engine")
16
+ if st.button("Connect to Search Engine Database", type="primary"):
17
  index_name = st.text_input("Enter a database name:", "")
18
  key = st.text_input("Enter a key:", "")
19
  namespace = st.text_input("Enter a table name:", "")
 
34
  # connect to index
35
  index = pc.Index(index_name)
36
  st.write('Successfully connected to your Search Engine DB!')
37
+ st.write('Start searching...')
 
38
 
39
 
40
+ query = st.text_input("Enter a search query:", "")
41
+
42
+ # If the user has entered a search query, search the Pinecone index with the query
43
+ if query:
44
+ # Upsert the embeddings for the query into the Pinecone index
45
+ query_embeddings = model.encode(query).tolist()
46
+ # now query
47
+ xc = index.query(vector=query_embeddings, top_k=10, namespace=namespace, include_metadata=True)
48
+
49
+ # Display the search results
50
+ st.write(f"Search results for '{query}':")
51
+ for result in xc['matches']:
52
+ st.write(f"{round(result['score'], 2)}: {result['metadata']['meta_text']}")