File size: 4,517 Bytes
9b5b26a c19d193 63cd85f 6aae614 8fe992b 63cd85f 9b5b26a 63cd85f 9b5b26a 63cd85f 9b5b26a 63cd85f 9b5b26a 63cd85f 9b5b26a 8c01ffb 6aae614 ae7a494 e121372 bf6d34c 29ec968 fe328e0 13d500a 8c01ffb 9b5b26a 8c01ffb 861422e 9b5b26a 8c01ffb 8fe992b 63cd85f 8c01ffb 861422e 8fe992b 9b5b26a 8c01ffb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool
import datetime
import requests
import pytz
import yaml
import yfinance as yf
from ta.momentum import RSIIndicator, StochasticOscillator
from ta.trend import MACD
from ta.volume import volume_weighted_average_price
from tools.final_answer import FinalAnswerTool
from Gradio_UI import GradioUI
# # Below is an example of a tool that does nothing. Amaze us with your creativity !
# @tool
# def my_custom_tool(arg1:str, arg2:int)-> str: #it's import to specify the return type
# #Keep this format for the description / args / args description but feel free to modify the tool
# """A tool that does nothing yet
# Args:
# arg1: the first argument
# arg2: the second argument
# """
# return "What magic will you build ?"
@tool
def get_stock_price(ticker: str) -> Union[Dict, str]:
"""
A tool that fetches the historical stock price data and technical indicators for a given ticker.
Args:
ticker: A string representing a stocke ticker name (e.g AAPL)
"""
try:
data = yf.download(
ticker,
start=dt.datetime.now() - dt.timedelta(weeks=24 * 3),
end=dt.datetime.now(),
interval="1wk",
)
df = data.copy()
data.reset_index(inplace=True)
data.Date = data.Date.astype(str)
indicators = {}
rsi_series = RSIIndicator(df["Close"], window=14).rsi().iloc[-12:]
indicators["RSI"] = {
date.strftime("%Y-%m-%d"): int(value)
for date, value in rsi_series.dropna().to_dict().items()
}
stochastic_series = (
StochasticOscillator(df["High"], df["Low"], df["Close"], window=14)
.stoch()
.iloc[-12:]
)
indicators["Stochastic Oscillator"] = {
date.strftime("%Y-%m-%d"): int(value)
for date, value in stochastic_series.dropna().to_dict().items()
}
macd = MACD(df["Close"])
macd_series = macd.macd().iloc[-12:]
indicators["MACD"] = {
date.strftime("%Y-%m-%d"): int(value)
for date, value in macd_series.to_dict().items()
}
macd_signal_series = macd.macd_signal().iloc[-12:]
indicators["MACD Signal"] = {
date.strftime("%Y-%m-%d"): int(value)
for date, value in macd_signal_series.to_dict().items()
}
vwap_series = volume_weighted_average_price(
df["High"], df["Low"], df["Close"], df["Volume"]
).iloc[-12:]
indicators["vwap"] = {
date.strftime("%Y-%m-%d"): int(value)
for date, value in vwap_series.to_dict().items()
}
return {"stock_price": data.to_dict(orient="records"), "indicators": indicators}
except Exception as e:
return f"Error fetching price data: {str(e)}"
@tool
def get_current_time_in_timezone(timezone: str) -> str:
"""A tool that fetches the current local time in a specified timezone.
Args:
timezone: A string representing a valid timezone (e.g., 'America/New_York').
"""
try:
# Create timezone object
tz = pytz.timezone(timezone)
# Get current time in that timezone
local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
return f"The current local time in {timezone} is: {local_time}"
except Exception as e:
return f"Error fetching time for timezone '{timezone}': {str(e)}"
final_answer = FinalAnswerTool()
# If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder:
# model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud'
model = HfApiModel(
max_tokens=2096,
temperature=0.5,
model_id='Qwen/Qwen2.5-Coder-32B-Instruct',# it is possible that this model may be overloaded
custom_role_conversions=None,
)
# Import tool from Hub
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)
with open("prompts.yaml", 'r') as stream:
prompt_templates = yaml.safe_load(stream)
agent = CodeAgent(
model=model,
tools=[final_answer, get_stock_price], ## add your tools here (don't remove final answer)
max_steps=6,
verbosity_level=1,
grammar=None,
planning_interval=None,
name=None,
description=None,
prompt_templates=prompt_templates
)
GradioUI(agent).launch() |