from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool import datetime import requests import pytz import yaml import yfinance as yf from ta.momentum import RSIIndicator, StochasticOscillator from ta.trend import MACD from ta.volume import volume_weighted_average_price from tools.final_answer import FinalAnswerTool from Gradio_UI import GradioUI # # Below is an example of a tool that does nothing. Amaze us with your creativity ! # @tool # def my_custom_tool(arg1:str, arg2:int)-> str: #it's import to specify the return type # #Keep this format for the description / args / args description but feel free to modify the tool # """A tool that does nothing yet # Args: # arg1: the first argument # arg2: the second argument # """ # return "What magic will you build ?" @tool def get_stock_price(ticker: str) -> Union[Dict, str]: """ A tool that fetches the historical stock price data and technical indicators for a given ticker. Args: ticker: A string representing a stocke ticker name (e.g AAPL) """ try: data = yf.download( ticker, start=dt.datetime.now() - dt.timedelta(weeks=24 * 3), end=dt.datetime.now(), interval="1wk", ) df = data.copy() data.reset_index(inplace=True) data.Date = data.Date.astype(str) indicators = {} rsi_series = RSIIndicator(df["Close"], window=14).rsi().iloc[-12:] indicators["RSI"] = { date.strftime("%Y-%m-%d"): int(value) for date, value in rsi_series.dropna().to_dict().items() } stochastic_series = ( StochasticOscillator(df["High"], df["Low"], df["Close"], window=14) .stoch() .iloc[-12:] ) indicators["Stochastic Oscillator"] = { date.strftime("%Y-%m-%d"): int(value) for date, value in stochastic_series.dropna().to_dict().items() } macd = MACD(df["Close"]) macd_series = macd.macd().iloc[-12:] indicators["MACD"] = { date.strftime("%Y-%m-%d"): int(value) for date, value in macd_series.to_dict().items() } macd_signal_series = macd.macd_signal().iloc[-12:] indicators["MACD Signal"] = { date.strftime("%Y-%m-%d"): int(value) for date, value in macd_signal_series.to_dict().items() } vwap_series = volume_weighted_average_price( df["High"], df["Low"], df["Close"], df["Volume"] ).iloc[-12:] indicators["vwap"] = { date.strftime("%Y-%m-%d"): int(value) for date, value in vwap_series.to_dict().items() } return {"stock_price": data.to_dict(orient="records"), "indicators": indicators} except Exception as e: return f"Error fetching price data: {str(e)}" @tool def get_current_time_in_timezone(timezone: str) -> str: """A tool that fetches the current local time in a specified timezone. Args: timezone: A string representing a valid timezone (e.g., 'America/New_York'). """ try: # Create timezone object tz = pytz.timezone(timezone) # Get current time in that timezone local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S") return f"The current local time in {timezone} is: {local_time}" except Exception as e: return f"Error fetching time for timezone '{timezone}': {str(e)}" final_answer = FinalAnswerTool() # If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder: # model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud' model = HfApiModel( max_tokens=2096, temperature=0.5, model_id='Qwen/Qwen2.5-Coder-32B-Instruct',# it is possible that this model may be overloaded custom_role_conversions=None, ) # Import tool from Hub image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True) with open("prompts.yaml", 'r') as stream: prompt_templates = yaml.safe_load(stream) agent = CodeAgent( model=model, tools=[final_answer, get_stock_price], ## add your tools here (don't remove final answer) max_steps=6, verbosity_level=1, grammar=None, planning_interval=None, name=None, description=None, prompt_templates=prompt_templates ) GradioUI(agent).launch()