File size: 21,810 Bytes
6872416 742561a 6872416 742561a 6872416 af5aac8 211523e af5aac8 c9b7b71 af5aac8 c9b7b71 af5aac8 c9b7b71 8acce47 6872416 8acce47 6872416 742561a 8acce47 6872416 742561a 6872416 742561a 6872416 742561a 6872416 742561a 6872416 742561a 6872416 987ae50 fe3f2b5 987ae50 9558506 6872416 bb783f2 6872416 d20ef6e fefff15 d20ef6e fefff15 d20ef6e af8b700 fefff15 d20ef6e a92b10d 6346823 fefff15 6346823 d2ab270 63aedd5 c9b7b71 8e966f8 63aedd5 6346823 6872416 13176e7 6872416 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 |
import os
import json
import pandas as pd
import time
import phoenix as px
from phoenix.trace.langchain import OpenInferenceTracer, LangChainInstrumentor
#from hallucinator import HallucinatonEvaluater
from langchain.embeddings import HuggingFaceEmbeddings #for using HugginFace models
from langchain.chains.question_answering import load_qa_chain
from langchain import HuggingFaceHub
from langchain.prompts import PromptTemplate
from langchain.chains import RetrievalQA
from langchain.callbacks import StdOutCallbackHandler
#from langchain.retrievers import KNNRetriever
from langchain.storage import LocalFileStore
from langchain.embeddings import CacheBackedEmbeddings
from langchain.vectorstores import FAISS
from langchain.document_loaders import WebBaseLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
import numpy as np
import streamlit as st
import pandas as pd
# from sklearn import datasets
# from sklearn.ensemble import RandomForestClassifier
from PIL import Image
global trace_df
# Page config
st.set_page_config(page_title="RAG PoC", layout="wide")
st.sidebar.image(Image.open("./test-logo.png"), use_column_width=True)
@st.cache_resource
def tracer_config():
#phoenix setup
session = px.launch_app()
# If no exporter is specified, the tracer will export to the locally running Phoenix server
tracer = OpenInferenceTracer()
# If no tracer is specified, a tracer is constructed for you
LangChainInstrumentor(tracer).instrument()
time.sleep(3)
print(session.url)
tracer_config()
tab1, tab2, tab3 = st.tabs(["📈 **RAG**", "🗃 FactVsHallucinate", "🤖 **RAG Scoring** " ])
os.environ["HUGGINGFACEHUB_API_TOKEN"] = "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"
# embedding cache
#store = LocalFileStore("./cache/")
# define embedder
embedder = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
#embedder=HuggingFaceHub(repo_id="sentence-transformers/all-mpnet-base-v2")
#embedder = CacheBackedEmbeddings.from_bytes_store(core_embeddings_model, store)
# define llm
llm=HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":1, "max_length":1000000})
#llm=HuggingFaceHub(repo_id="gpt2", model_kwargs={"temperature":1, "max_length":1000000})
handler = StdOutCallbackHandler()
# set global variable
# vectorstore = None
# retriever = None
class HallucinatePromptContext:
def __init__(self):
self.variables_list = ["query","answer","context"]
self.base_template = """In this task, you will be presented with a query, a reference text and an answer. The answer is
generated to the question based on the reference text. The answer may contain false information, you
must use the reference text to determine if the answer to the question contains false information,
if the answer is a hallucination of facts. Your objective is to determine whether the reference text
contains factual information and is not a hallucination. A 'hallucination' in this context refers to
an answer that is not based on the reference text or assumes information that is not available in
the reference text. Your response should be a single word: either "factual" or "hallucinated", and
it should not include any other text or characters. "hallucinated" indicates that the answer
provides factually inaccurate information to the query based on the reference text. "factual"
indicates that the answer to the question is correct relative to the reference text, and does not
contain made up information. Please read the query and reference text carefully before determining
your response.
# Query: {query}
# Reference text: {context}
# Answer: {answer}
Is the answer above factual or hallucinated based on the query and reference text?"""
class HallucinatonEvaluater:
def __init__(self, item):
self.question = item["question"]
self.answer = item["answer"]
#self.domain = item["domain"]
self.context = item["context"]
self.llm=HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":1, "max_length":1000000})
def get_prompt_template(self):
prompt = HallucinatePromptContext()
template = prompt.base_template
varialbles = prompt.variables_list
eval_template = PromptTemplate(input_variables=varialbles, template=template)
return eval_template
def evaluate(self):
prompt = self.get_prompt_template().format(query = self.question, answer = self.answer, context = self.context)
score = self.llm(prompt)
return score
#@st.cache_resource
@st.cache_data
def initialize_vectorstore():
webpage_loader = WebBaseLoader("https://www.tredence.com/case-studies/forecasting-app-installs-for-a-large-retailer-in-the-us").load()
webpage_chunks = _text_splitter(webpage_loader)
global vectorstore
global retriever
# store embeddings in vector store
vectorstore = FAISS.from_documents(webpage_chunks, embedder)
print("vector store initialized with sample doc")
# instantiate a retriever
retriever = vectorstore.as_retriever()
st.session_state['vectorstore'] = vectorstore
st.session_state['docadd'] = 0
print("st.session_state['docadd'] ", st.session_state['docadd'])
return retriever
def _text_splitter(doc):
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=600,
chunk_overlap=50,
length_function=len,
)
return text_splitter.transform_documents(doc)
def _load_docs(path: str):
load_doc = WebBaseLoader(path).load()
doc = _text_splitter(load_doc)
return doc
def rag_response(response):
#st.markdown("""<hr style="height:10px;border:none;color:#333;background-color:#333;" /> """, unsafe_allow_html=True)
#st.markdown(".stTextInput > label {font-size:105%; font-weight:bold; color:blue;} ",unsafe_allow_html=True) #for all text-input label sections
st.markdown('<h1 style="color:#100170;font-size:32px;text-align:center;padding:0;">RAG Response</h1>', unsafe_allow_html=True)
question_title = '<h2 style="color:#100170;font-size:18px;">Question</h2>'
question = f"<div style='background-color:#f0f0f0; padding:10px; border-radius:10px;'>{response['query']}</div>"
st.markdown(question_title, unsafe_allow_html=True)
st.markdown(question, unsafe_allow_html=True)
rag_output_title = '<h2 style="color:#100170;font-size:18px;">RAG Output</h2>'
rag_output = f"<div style='background-color:#f0f0f0; padding:10px; border-radius:10px;'>{response['result']}</div>"
st.markdown(rag_output_title, unsafe_allow_html=True)
st.markdown(rag_output, unsafe_allow_html=True)
# st.markdown('<h1 style="color:#100170;font-size:18px;">Augmented knowledge</h1>', unsafe_allow_html=True)
# st.text_area(label="", value=response["source_documents"])
#st.button("Check Hallucination")
# Create extractor instance
def _create_hallucination_scenario(item):
score = HallucinatonEvaluater(item).evaluate()
return score
def hallu_eval(question: str, answer: str, context: str):
print("in hallu eval")
hallucination_score = _create_hallucination_scenario({
"question": question,
"answer": answer,
"context": context
}
)
print("got hallu score")
st.markdown('<h1 style="color:#100170;font-size:24px;">Hallucinated?</h1>', unsafe_allow_html=True)
st.text_area(label=" ", value=hallucination_score, height=30)
#return {"hallucination_score": hallucination_score}
#time.sleep(10)
def scoring_eval(question: str, answer: str, context: str):
print("in scoring eval")
score = _create_evaluation_scenario({
"question": question,
"answer": answer,
"context": context
}
)
print("got score")
st.markdown('<h1 style="color:#100170;font-size:24px;">Completion Score</h1>', unsafe_allow_html=True)
st.text_area(label=" ", value=score, height=30)
#return {"hallucination_score": hallucination_score}
#time.sleep(10)
# if 'clicked' not in st.session_state:
# print("set state to False")
# st.session_state.clicked = False
def click_button(response):
# print("set state to True")
# st.session_state.clicked = True
hallu_eval(response["query"], response["result"], "blah blah")
class BasePromptContext:
def __init__(self):
self.variables_list = ["question","answer","context"]
self.base_template = """Please act as an impartial judge and evaluate the quality of the provided answer which attempts to answer the provided question based on a provided context.
And you'll need to submit your grading for the correctness, comprehensiveness and readability of the answer, using JSON format with the 2 items in parenthesis:
("score": [your score number for the correctness of the answer], "reasoning": [your one line step by step reasoning about the correctness of the answer])
Below is your grading rubric:
- Correctness: If the answer correctly answer the question, below are the details for different scores:
- Score 0: the answer is completely incorrect, doesn’t mention anything about the question or is completely contrary to the correct answer.
- For example, when asked “How to terminate a databricks cluster”, the answer is empty string, or content that’s completely irrelevant, or sorry I don’t know the answer.
- Score 50: the answer provides some relevance to the question and answer one aspect of the question correctly.
- Example:
- Question: How to terminate a databricks cluster
- Answer: Databricks cluster is a cloud-based computing environment that allows users to process big data and run distributed data processing tasks efficiently.
- Or answer: In the Databricks workspace, navigate to the "Clusters" tab. And then this is a hard question that I need to think more about it
- Score 75: the answer mostly answer the question but is missing or hallucinating on one critical aspect.
- Example:
- Question: How to terminate a databricks cluster”
- Answer: “In the Databricks workspace, navigate to the "Clusters" tab.
Find the cluster you want to terminate from the list of active clusters.
And then you’ll find a button to terminate all clusters at once”
- Score 100: the answer correctly answer the question and not missing any major aspect
- Example:
- Question: How to terminate a databricks cluster
- Answer: In the Databricks workspace, navigate to the "Clusters" tab.
Find the cluster you want to terminate from the list of active clusters.
Click on the down-arrow next to the cluster name to open the cluster details.
Click on the "Terminate" button. A confirmation dialog will appear. Click "Terminate" again to confirm the action.”
Provided question:
{question}
Provided answer:
{answer}
Provided context:
{context}
Please provide your grading for the correctness and explain you gave the particular grading"""
class Evaluater:
def __init__(self, item):
self.question = item["question"]
self.answer = item["answer"]
#self.domain = item["domain"]
self.context = item["context"]
self.llm=HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":1, "max_length":1000000})
def get_prompt_template(self):
prompt = BasePromptContext()
template = prompt.base_template
varialbles = prompt.variables_list
eval_template = PromptTemplate(input_variables=varialbles, template=template)
return eval_template
def evaluate(self):
prompt = self.get_prompt_template().format(question = self.question, answer = self.answer, context = self.context)
score = self.llm(prompt)
return score
# Create extractor instance
def _create_evaluation_scenario(item):
score = Evaluater(item).evaluate()
return score
# Create extractor instance
def _create_hallucination_scenario(item):
score = HallucinatonEvaluater(item).evaluate()
return score
#st.write(''' # RAG App''')
with tab1:
with st.form(" RAG with evaluation - scoring & hallucination "):
#tab1.subheader(''' # RAG App''')
initialize_vectorstore()
time.sleep(2)
try:
if st.session_state['docadd'] == 1:
retriever = st.session_state['retriever']
else:
retriever = initialize_vectorstore()
except:
st.session_state['docadd'] = 0
retriever = initialize_vectorstore()
#print("lenght in tab1, ", len(vectorstore.serialize_to_bytes()))
options = ["true", "false"]
st.markdown('<h1 style="color:#100170;font-size:24px;margin:0;padding:0">User Query</h1>', unsafe_allow_html=True)
question = st.text_input(label="", value="", placeholder="Type in question", label_visibility="visible", disabled=False)
st.markdown("<h1 style='color:#100170;font-size:24px;margin-bottom:0;padding:0;'>Perform Evaluation</h1>", unsafe_allow_html=True)
evaluate = st.radio("", ["True", "False"])
m = st.markdown("""
<style>
div.stButton > button:first-child {
background-color: #100170;
color:#ffffff;
}
# div.stButton > button:hover {
# background-color: #00ff00;
# color:#ff0000;
# }
</style>""", unsafe_allow_html=True)
#st.markdown("----", unsafe_allow_html=True)
columns = st.columns([2,1,2])
if columns[1].form_submit_button(" Start RAG "):
st.markdown("""<hr style="height:10px;border:none;color:#333;background-color: #100170;" /> """, unsafe_allow_html=True)
print("retrie ,", retriever)
chain = RetrievalQA.from_chain_type(
llm=llm,
retriever=retriever,
callbacks=[handler],
return_source_documents=True
)
#response = chain("how tredence brought good insight?")
response = chain(question)
print(response["result"])
rag_response(response)
#click_button(response)
time.sleep(4)
df = px.active_session().get_spans_dataframe()
#print(px.active_session())
#print(px.active_session().get_spans_dataframe())
print(df.count())
df_sorted = df.sort_values(by='end_time',ascending=False)
model_input = json.loads(df_sorted[df_sorted["name"] == "LLMChain"]["attributes.input.value"][0])
context = model_input["context"]
print(context)
if evaluate:
score = _create_evaluation_scenario({
"question": question,
"answer": response['result'],
"context": context
})
hallucination_score = _create_hallucination_scenario({
"question": question,
"answer": response['result'],
"context": context
}
)
else:
score = "Evaluation is Turned OFF"
# Confidence Score Section
st.markdown('<h2 style="color:#100170;font-size:18px">Confidence Score</h2>', unsafe_allow_html=True)
st.markdown(f'<div style="max-height: 150px; overflow-y: auto; background-color:#f0f0f0; padding:10px; border-radius:10px;">{score}</div>', unsafe_allow_html=True)
# Hallucinated Section
st.markdown('<h2 style="color:#100170;font-size:18px">Hallucinated?</h2>', unsafe_allow_html=True)
st.markdown(f'<div style="max-height: 150px; overflow-y: auto; background-color:#f0f0f0; padding:10px; border-radius:10px;">{hallucination_score}</div>', unsafe_allow_html=True)
# Clean and Scrollable Context Section
cleaned_context = "\n".join(line.strip() for line in context.splitlines() if line.strip())
st.markdown('<h2 style="color:#100170;font-size:18px">Context</h2>', unsafe_allow_html=True)
st.markdown(f'<div style="max-height: 300px; overflow-y: auto; background-color:#f0f0f0; padding:10px; border-radius:10px;">{cleaned_context}</div>', unsafe_allow_html=True)
# Augmented Knowledge Metadata Section
metadata_header = '<h2 style="color:#100170;font-size:18px">Augmented Knowledge Metadata</h2>'
metadata_container = '<div style="max-height: 300px; overflow-y: auto; background-color:#f0f0f0; padding:10px; border-radius:10px;">{}</div>'
metadata_list = [doc.metadata for doc in response["source_documents"]]
formatted_metadata_list = []
for i, metadata in enumerate(metadata_list, start=1):
formatted_metadata = f"<h2 style='color:#3366ff; font-size:16px;padding:5px 0px;'>Metadata {i}:</h2><"
source = metadata.get('source', '').replace('\n', '')
title = metadata.get('title', '').replace('\n', '')
description = metadata.get('description', '').replace('\n', '')
formatted_metadata += f"<span style='color:#ff9900; font-weight:bold;'>Source:</span> <span style='color:#009900;'>{source}</span><br>"
formatted_metadata += f"<span style='color:#ff9900; font-weight:bold;'>Title:</span> <span style='color:#cc00cc;'>{title}</span><br>"
formatted_metadata += f"<span style='color:#ff9900; font-weight:bold;'>Description:</span> <span style='color:#ff0000;'>{description}</span><br><br>"
formatted_metadata_list.append(formatted_metadata)
metadata_text = '\n'.join(formatted_metadata_list)
formatted_metadata_section = metadata_header + metadata_container.format(metadata_text)
st.markdown(formatted_metadata_section, unsafe_allow_html=True)
# if st.session_state.clicked:
# # The message and nested widget will remain on the page
# hallu_eval(response["query"], response["result"], "blah blah")
# print("in if for hallu")
with tab2:
with st.form(" LLM-aasisted evaluation of Hallucination"):
#print("lenght in tab2, ", len(vectorstore.serialize_to_bytes()))
question = st.text_input(label="**Question**", value="", label_visibility="visible", disabled=False)
answer = st.text_input(label="**answer**", value="", label_visibility="visible", disabled=False)
context = st.text_input(label="**context**", value="", label_visibility="visible", disabled=False)
if st.form_submit_button("Evaluate"):
hallu_eval(question, answer, context)
with tab3:
with st.form("RAG scoring"):
#print("lenght in tab2, ", len(vectorstore.serialize_to_bytes()))
question = st.text_input(label="**Question**", value="", label_visibility="visible", disabled=False)
answer = st.text_input(label="**answer**", value="", label_visibility="visible", disabled=False)
context = st.text_input(label="**context**", value="", label_visibility="visible", disabled=False)
if st.form_submit_button("Evaluate"):
scoring_eval(question, answer, context)
print("activ session: ", px.active_session().get_spans_dataframe())
trace_df = px.active_session().get_spans_dataframe()
st.session_state['trace_df'] = trace_df
# with tab3:
# with st.form(" trace"):
# if px.active_session():
# df0 = px.active_session().get_spans_dataframe()
# if not df0.empty:
# df= df0.fillna('')
# st.dataframe(df)
def rag():
print("in rag")
options = ["true", "false"]
question = st.text_input(label="user question", value="", label_visibility="visible", disabled=False)
evaluate = st.selectbox(label="select evaluation",options=options, index=0, placeholder="Choose an option", disabled=False, label_visibility="visible")
if st.button("do RAG"):
chain = RetrievalQA.from_chain_type(
llm=llm,
retriever=retriever,
callbacks=[handler],
return_source_documents=True
)
#response = chain("how tredence brought good insight?")
response = chain(question)
print(response["result"])
# time.sleep(4)
# df = px.active_session().get_spans_dataframe()
# print(px.active_session())
# print(px.active_session().get_spans_dataframe())
# print(df.count())
# df_sorted = df.sort_values(by='end_time',ascending=False)
# model_input = json.loads(df_sorted[df_sorted["name"] == "LLMChain"]["attributes.input.value"][0])
# context = model_input["context"]
# print(context)
# if evaluate:
# score = _create_evaluation_scenario({
# "question": question,
# "answer": response['result'],
# "context": context
# })
# else:
# score = "Evaluation is Turned OFF"
# return {"question": question, "answer": response['result'], "context": context, "score": score}
rag_response(response)
# if st.button("click me"):
# click_button(response)
click = st.button("Do you want to see more?")
if click:
st.session_state.more_stuff = True
if st.session_state.more_stuff:
click_button(response)
#st.write("Doing more optional stuff")
return(response)
a = st.markdown("""
<style>
div.stTextArea > textarea {
background-color: #0099ff;
height: 1400px;
width: 800px;
}
</style>""", unsafe_allow_html=True) |