from langchain_community.vectorstores import FAISS # from langchain_community.embeddings import SentenceTransformerEmbeddings # from langchain_community.embeddings.ollama import OllamaEmbeddings from langchain_huggingface import HuggingFaceEmbeddings def create_vector_store(splits): # embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2") embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2") # embeddings = OllamaEmbeddings(model="nomic-embed-text") return FAISS.from_documents(splits, embeddings)