Spaces:
Sleeping
Sleeping
File size: 5,403 Bytes
b3931e0 5bfb1a0 b3931e0 1c336cb b3931e0 1c336cb b3931e0 1c336cb b3931e0 5bfb1a0 b3931e0 5bfb1a0 b3931e0 5bfb1a0 1c336cb 5bfb1a0 b3931e0 5bfb1a0 b3931e0 5bfb1a0 b3931e0 1c336cb b3931e0 5bfb1a0 1c336cb b3931e0 5bfb1a0 b3931e0 1c336cb b3931e0 1c336cb b3931e0 5bfb1a0 1c336cb b3931e0 5bfb1a0 b3931e0 1c336cb b3931e0 1c336cb b3931e0 1c336cb b3931e0 5bfb1a0 1c336cb b3931e0 5bfb1a0 b3931e0 1c336cb b3931e0 5bfb1a0 b3931e0 5bfb1a0 b3931e0 5bfb1a0 1c336cb 5bfb1a0 b3931e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
import streamlit as st
import os
from pydub import AudioSegment
from pydub.silence import split_on_silence
from dotenv import load_dotenv
from tempfile import NamedTemporaryFile
import math
from docx import Document
import whisper
# Load environment variables from .env file (if needed for other configurations)
load_dotenv()
@st.cache_resource
def load_whisper_model():
"""
Load the Whisper model once and cache it for future use.
You can choose the model size: "tiny", "base", "small", "medium", or "large".
"""
model = whisper.load_model("base")
return model
# Load the Whisper model globally so it’s only loaded once.
model = load_whisper_model()
def split_audio_on_silence(audio_file_path, min_silence_len=500, silence_thresh=-40, keep_silence=250):
"""
Split an audio file into chunks using silence detection.
Args:
audio_file_path (str): Path to the audio file.
min_silence_len (int): Minimum length of silence (in ms) required for a split.
silence_thresh (int): The volume (in dBFS) below which is considered silence.
keep_silence (int): Amount of silence (in ms) to retain at the beginning and end of each chunk.
Returns:
list: List of AudioSegment chunks.
"""
audio = AudioSegment.from_file(audio_file_path)
chunks = split_on_silence(
audio,
min_silence_len=min_silence_len,
silence_thresh=silence_thresh,
keep_silence=keep_silence
)
return chunks
def transcribe(audio_file):
"""
Transcribe an audio file using the locally loaded Whisper model.
Args:
audio_file (str): Path to the audio file.
Returns:
str: Transcribed text.
"""
result = model.transcribe(audio_file, language="en")
return result["text"]
def process_audio_chunks(audio_chunks):
"""
Process and transcribe each audio chunk in sequence.
Args:
audio_chunks (list): List of AudioSegment chunks.
Returns:
str: Combined transcription from all chunks.
"""
transcriptions = []
min_length_ms = 100 # Minimum length required for processing
for i, chunk in enumerate(audio_chunks):
if len(chunk) < min_length_ms:
st.warning(f"Chunk {i} is too short to be processed.")
continue
# Save the chunk temporarily as a WAV file
with NamedTemporaryFile(delete=False, suffix=".wav") as temp_audio_file:
chunk.export(temp_audio_file.name, format="wav")
temp_audio_file_path = temp_audio_file.name
transcription = transcribe(temp_audio_file_path)
if transcription:
transcriptions.append(transcription)
st.write(f"Transcription for chunk {i}: {transcription}")
os.remove(temp_audio_file_path)
return " ".join(transcriptions)
def save_transcription_to_docx(transcription, audio_file_path):
"""
Save the transcription as a .docx file.
Args:
transcription (str): Transcribed text.
audio_file_path (str): Path to the original audio file for naming purposes.
Returns:
str: Path to the saved .docx file.
"""
base_name = os.path.splitext(os.path.basename(audio_file_path))[0]
output_file_name = f"{base_name}_full_transcription.docx"
doc = Document()
doc.add_paragraph(transcription)
doc.save(output_file_name)
return output_file_name
st.title("Audio Transcription with Whisper (Local)")
# Allow uploading of audio or video files
uploaded_file = st.file_uploader("Upload an audio or video file", type=["wav", "mp3", "ogg", "m4a", "mp4", "mov"])
if 'transcription' not in st.session_state:
st.session_state.transcription = None
if uploaded_file is not None and st.session_state.transcription is None:
st.audio(uploaded_file)
# Save uploaded file temporarily
file_extension = uploaded_file.name.split(".")[-1]
temp_audio_file = f"temp_audio_file.{file_extension}"
with open(temp_audio_file, "wb") as f:
f.write(uploaded_file.getbuffer())
# Split and process audio using silence detection
with st.spinner('Transcribing...'):
audio_chunks = split_audio_on_silence(
temp_audio_file,
min_silence_len=500, # adjust based on your audio
silence_thresh=-40, # adjust based on ambient noise level
keep_silence=250 # retains a bit of silence at the edges
)
transcription = process_audio_chunks(audio_chunks)
if transcription:
st.session_state.transcription = transcription
st.success('Transcription complete!')
output_docx_file = save_transcription_to_docx(transcription, uploaded_file.name)
st.session_state.output_docx_file = output_docx_file
if os.path.exists(temp_audio_file):
os.remove(temp_audio_file)
if st.session_state.transcription:
st.text_area("Transcription", st.session_state.transcription, key="transcription_area_final")
with open(st.session_state.output_docx_file, "rb") as docx_file:
st.download_button(
label="Download Transcription (.docx)",
data=docx_file,
file_name=st.session_state.output_docx_file,
mime='application/vnd.openxmlformats-officedocument.wordprocessingml.document'
)
|