File size: 5,811 Bytes
b3931e0
 
eb035cc
 
b3931e0
5bfb1a0
b3931e0
 
 
 
eb035cc
b3931e0
eb035cc
b3931e0
 
1c336cb
 
 
eb035cc
 
1c336cb
eb035cc
 
 
 
1c336cb
eb035cc
b3931e0
5bfb1a0
b3931e0
5bfb1a0
 
b3931e0
5bfb1a0
1c336cb
5bfb1a0
 
 
b3931e0
5bfb1a0
b3931e0
 
5bfb1a0
 
 
 
 
 
b3931e0
 
 
 
eb035cc
1c336cb
b3931e0
5bfb1a0
1c336cb
b3931e0
5bfb1a0
b3931e0
eb035cc
 
 
 
 
 
 
b3931e0
 
 
eb035cc
1c336cb
b3931e0
5bfb1a0
1c336cb
b3931e0
5bfb1a0
b3931e0
 
eb035cc
 
b3931e0
 
 
 
 
 
 
 
eb035cc
b3931e0
 
 
 
eb035cc
b3931e0
 
 
 
 
 
1c336cb
b3931e0
5bfb1a0
 
1c336cb
b3931e0
5bfb1a0
b3931e0
 
 
 
 
 
 
 
eb035cc
b3931e0
5bfb1a0
b3931e0
 
 
 
 
 
 
 
 
 
 
 
 
eb035cc
5bfb1a0
b3931e0
5bfb1a0
 
eb035cc
 
 
5bfb1a0
b3931e0
 
 
 
 
 
eb035cc
b3931e0
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import streamlit as st
import os
import librosa
import torch
from pydub import AudioSegment
from pydub.silence import split_on_silence
from dotenv import load_dotenv
from tempfile import NamedTemporaryFile
import math
from docx import Document
from transformers import WhisperProcessor, WhisperForConditionalGeneration

# Load environment variables from .env file (if needed)
load_dotenv()

@st.cache_resource
def load_whisper_model():
    """
    Load the Whisper model and processor from Hugging Face.
    You can change the model variant ("openai/whisper-base" is used here).
    """
    model_name = "openai/whisper-base"  # Options: "tiny", "base", "small", "medium", "large"
    processor = WhisperProcessor.from_pretrained(model_name)
    model = WhisperForConditionalGeneration.from_pretrained(model_name)
    return processor, model

processor, model = load_whisper_model()

def split_audio_on_silence(audio_file_path, min_silence_len=500, silence_thresh=-40, keep_silence=250):
    """
    Split an audio file into chunks using silence detection.
    
    Args:
        audio_file_path (str): Path to the audio file.
        min_silence_len (int): Minimum length of silence (in ms) required for a split.
        silence_thresh (int): The volume (in dBFS) below which is considered silence.
        keep_silence (int): Amount of silence (in ms) to retain at the beginning and end of each chunk.
    
    Returns:
        list: List of AudioSegment chunks.
    """
    audio = AudioSegment.from_file(audio_file_path)
    chunks = split_on_silence(
        audio, 
        min_silence_len=min_silence_len,
        silence_thresh=silence_thresh,
        keep_silence=keep_silence
    )
    return chunks

def transcribe(audio_file):
    """
    Transcribe an audio file using the locally loaded Whisper model from Hugging Face.
    
    Args:
        audio_file (str): Path to the audio file.
    
    Returns:
        str: Transcribed text.
    """
    # Load audio using librosa, resampling to 16000 Hz as required by Whisper
    speech, sr = librosa.load(audio_file, sr=16000)
    input_features = processor(speech, sampling_rate=16000, return_tensors="pt").input_features
    # Generate transcription
    predicted_ids = model.generate(input_features)
    transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
    return transcription

def process_audio_chunks(audio_chunks):
    """
    Process and transcribe each audio chunk.
    
    Args:
        audio_chunks (list): List of AudioSegment chunks.
    
    Returns:
        str: Combined transcription from all chunks.
    """
    transcriptions = []
    min_length_ms = 100  # Minimum length required (0.1 seconds)
    
    for i, chunk in enumerate(audio_chunks):
        if len(chunk) < min_length_ms:
            st.warning(f"Chunk {i} is too short to be processed.")
            continue
        
        with NamedTemporaryFile(delete=False, suffix=".wav") as temp_audio_file:
            chunk.export(temp_audio_file.name, format="wav")
            temp_audio_file_path = temp_audio_file.name
        
        transcription = transcribe(temp_audio_file_path)
        if transcription:
            transcriptions.append(transcription)
            st.write(f"Transcription for chunk {i}: {transcription}")
        
        os.remove(temp_audio_file_path)
    return " ".join(transcriptions)

def save_transcription_to_docx(transcription, audio_file_path):
    """
    Save the transcription as a .docx file.
    
    Args:
        transcription (str): Transcribed text.
        audio_file_path (str): Path to the original audio file for naming purposes.
    
    Returns:
        str: Path to the saved .docx file.
    """
    base_name = os.path.splitext(os.path.basename(audio_file_path))[0]
    output_file_name = f"{base_name}_full_transcription.docx"
    doc = Document()
    doc.add_paragraph(transcription)
    doc.save(output_file_name)
    return output_file_name

st.title("Audio Transcription with Whisper (Local via Hugging Face)")

# Allow uploading of audio or video files
uploaded_file = st.file_uploader("Upload an audio or video file", type=["wav", "mp3", "ogg", "m4a", "mp4", "mov"])

if 'transcription' not in st.session_state:
    st.session_state.transcription = None

if uploaded_file is not None and st.session_state.transcription is None:
    st.audio(uploaded_file)
    
    # Save uploaded file temporarily
    file_extension = uploaded_file.name.split(".")[-1]
    temp_audio_file = f"temp_audio_file.{file_extension}"
    with open(temp_audio_file, "wb") as f:
        f.write(uploaded_file.getbuffer())
    
    # Split and process audio using silence detection
    with st.spinner('Transcribing...'):
        audio_chunks = split_audio_on_silence(
            temp_audio_file, 
            min_silence_len=500,
            silence_thresh=-40,
            keep_silence=250
        )
        transcription = process_audio_chunks(audio_chunks)
        if transcription:
            st.session_state.transcription = transcription
            st.success('Transcription complete!')
            output_docx_file = save_transcription_to_docx(transcription, uploaded_file.name)
            st.session_state.output_docx_file = output_docx_file
    
    if os.path.exists(temp_audio_file):
        os.remove(temp_audio_file)

if st.session_state.transcription:
    st.text_area("Transcription", st.session_state.transcription, key="transcription_area_final")
    with open(st.session_state.output_docx_file, "rb") as docx_file:
        st.download_button(
            label="Download Transcription (.docx)",
            data=docx_file,
            file_name=st.session_state.output_docx_file,
            mime='application/vnd.openxmlformats-officedocument.wordprocessingml.document'
        )