Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -8,37 +8,38 @@ from dotenv import load_dotenv
|
|
8 |
from tempfile import NamedTemporaryFile
|
9 |
import math
|
10 |
from docx import Document
|
|
|
11 |
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
12 |
|
13 |
-
# Load environment variables from .env file (if needed)
|
14 |
load_dotenv()
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
@st.cache_resource
|
17 |
def load_whisper_model():
|
18 |
"""
|
19 |
Load the Whisper model and processor from Hugging Face.
|
20 |
-
|
21 |
"""
|
22 |
-
model_name = "openai/whisper-base"
|
23 |
processor = WhisperProcessor.from_pretrained(model_name)
|
24 |
model = WhisperForConditionalGeneration.from_pretrained(model_name)
|
25 |
return processor, model
|
26 |
|
27 |
processor, model = load_whisper_model()
|
28 |
|
|
|
|
|
29 |
def split_audio_on_silence(audio_file_path, min_silence_len=500, silence_thresh=-40, keep_silence=250):
|
30 |
"""
|
31 |
Split an audio file into chunks using silence detection.
|
32 |
-
|
33 |
-
Args:
|
34 |
-
audio_file_path (str): Path to the audio file.
|
35 |
-
min_silence_len (int): Minimum length of silence (in ms) required for a split.
|
36 |
-
silence_thresh (int): The volume (in dBFS) below which is considered silence.
|
37 |
-
keep_silence (int): Amount of silence (in ms) to retain at the beginning and end of each chunk.
|
38 |
-
|
39 |
-
Returns:
|
40 |
-
list: List of AudioSegment chunks.
|
41 |
"""
|
|
|
42 |
audio = AudioSegment.from_file(audio_file_path)
|
43 |
chunks = split_on_silence(
|
44 |
audio,
|
@@ -46,72 +47,66 @@ def split_audio_on_silence(audio_file_path, min_silence_len=500, silence_thresh=
|
|
46 |
silence_thresh=silence_thresh,
|
47 |
keep_silence=keep_silence
|
48 |
)
|
|
|
49 |
return chunks
|
50 |
|
51 |
def transcribe(audio_file):
|
52 |
"""
|
53 |
Transcribe an audio file using the locally loaded Whisper model from Hugging Face.
|
54 |
-
|
55 |
-
Args:
|
56 |
-
audio_file (str): Path to the audio file.
|
57 |
-
|
58 |
-
Returns:
|
59 |
-
str: Transcribed text.
|
60 |
"""
|
61 |
-
# Load audio
|
62 |
speech, sr = librosa.load(audio_file, sr=16000)
|
63 |
input_features = processor(speech, sampling_rate=16000, return_tensors="pt").input_features
|
64 |
-
# Generate transcription
|
65 |
predicted_ids = model.generate(input_features)
|
66 |
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
|
67 |
return transcription
|
68 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
def process_audio_chunks(audio_chunks):
|
70 |
"""
|
71 |
-
Process and transcribe each audio chunk.
|
72 |
-
|
73 |
-
Args:
|
74 |
-
audio_chunks (list): List of AudioSegment chunks.
|
75 |
-
|
76 |
-
Returns:
|
77 |
-
str: Combined transcription from all chunks.
|
78 |
"""
|
79 |
transcriptions = []
|
80 |
-
min_length_ms = 100 #
|
81 |
-
|
82 |
for i, chunk in enumerate(audio_chunks):
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
transcription = transcribe(temp_audio_file_path)
|
92 |
-
if transcription:
|
93 |
-
transcriptions.append(transcription)
|
94 |
-
st.write(f"Transcription for chunk {i}: {transcription}")
|
95 |
-
|
96 |
-
os.remove(temp_audio_file_path)
|
97 |
-
return " ".join(transcriptions)
|
98 |
|
99 |
def save_transcription_to_docx(transcription, audio_file_path):
|
100 |
"""
|
101 |
Save the transcription as a .docx file.
|
102 |
-
|
103 |
-
Args:
|
104 |
-
transcription (str): Transcribed text.
|
105 |
-
audio_file_path (str): Path to the original audio file for naming purposes.
|
106 |
-
|
107 |
-
Returns:
|
108 |
-
str: Path to the saved .docx file.
|
109 |
"""
|
110 |
base_name = os.path.splitext(os.path.basename(audio_file_path))[0]
|
111 |
output_file_name = f"{base_name}_full_transcription.docx"
|
|
|
112 |
doc = Document()
|
113 |
doc.add_paragraph(transcription)
|
114 |
doc.save(output_file_name)
|
|
|
115 |
return output_file_name
|
116 |
|
117 |
st.title("Audio Transcription with Whisper (Local via Hugging Face)")
|
@@ -131,21 +126,17 @@ if uploaded_file is not None and st.session_state.transcription is None:
|
|
131 |
with open(temp_audio_file, "wb") as f:
|
132 |
f.write(uploaded_file.getbuffer())
|
133 |
|
134 |
-
|
135 |
-
with st.spinner('
|
136 |
-
audio_chunks = split_audio_on_silence(
|
137 |
-
temp_audio_file,
|
138 |
-
min_silence_len=500,
|
139 |
-
silence_thresh=-40,
|
140 |
-
keep_silence=250
|
141 |
-
)
|
142 |
transcription = process_audio_chunks(audio_chunks)
|
143 |
if transcription:
|
144 |
st.session_state.transcription = transcription
|
145 |
st.success('Transcription complete!')
|
146 |
output_docx_file = save_transcription_to_docx(transcription, uploaded_file.name)
|
147 |
st.session_state.output_docx_file = output_docx_file
|
148 |
-
|
|
|
149 |
if os.path.exists(temp_audio_file):
|
150 |
os.remove(temp_audio_file)
|
151 |
|
|
|
8 |
from tempfile import NamedTemporaryFile
|
9 |
import math
|
10 |
from docx import Document
|
11 |
+
import time
|
12 |
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
13 |
|
14 |
+
# Load environment variables from .env file (if needed for other config)
|
15 |
load_dotenv()
|
16 |
|
17 |
+
# Create a placeholder for status messages
|
18 |
+
status_placeholder = st.empty()
|
19 |
+
|
20 |
+
# Display status while loading the model
|
21 |
+
status_placeholder.info("Loading Whisper model from Hugging Face...")
|
22 |
+
|
23 |
@st.cache_resource
|
24 |
def load_whisper_model():
|
25 |
"""
|
26 |
Load the Whisper model and processor from Hugging Face.
|
27 |
+
Change 'openai/whisper-base' to another variant if needed.
|
28 |
"""
|
29 |
+
model_name = "openai/whisper-base"
|
30 |
processor = WhisperProcessor.from_pretrained(model_name)
|
31 |
model = WhisperForConditionalGeneration.from_pretrained(model_name)
|
32 |
return processor, model
|
33 |
|
34 |
processor, model = load_whisper_model()
|
35 |
|
36 |
+
status_placeholder.info("Whisper model loaded successfully!")
|
37 |
+
|
38 |
def split_audio_on_silence(audio_file_path, min_silence_len=500, silence_thresh=-40, keep_silence=250):
|
39 |
"""
|
40 |
Split an audio file into chunks using silence detection.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
"""
|
42 |
+
status_placeholder.info("Splitting audio on silence...")
|
43 |
audio = AudioSegment.from_file(audio_file_path)
|
44 |
chunks = split_on_silence(
|
45 |
audio,
|
|
|
47 |
silence_thresh=silence_thresh,
|
48 |
keep_silence=keep_silence
|
49 |
)
|
50 |
+
status_placeholder.info(f"Audio split into {len(chunks)} chunks.")
|
51 |
return chunks
|
52 |
|
53 |
def transcribe(audio_file):
|
54 |
"""
|
55 |
Transcribe an audio file using the locally loaded Whisper model from Hugging Face.
|
56 |
+
This uses librosa to load and resample the audio as required.
|
|
|
|
|
|
|
|
|
|
|
57 |
"""
|
58 |
+
# Load audio with librosa at 16kHz (as required by Whisper)
|
59 |
speech, sr = librosa.load(audio_file, sr=16000)
|
60 |
input_features = processor(speech, sampling_rate=16000, return_tensors="pt").input_features
|
|
|
61 |
predicted_ids = model.generate(input_features)
|
62 |
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
|
63 |
return transcription
|
64 |
|
65 |
+
def transcribe_chunk(chunk, index, min_length_ms=100):
|
66 |
+
"""
|
67 |
+
Transcribe an individual audio chunk.
|
68 |
+
"""
|
69 |
+
if len(chunk) < min_length_ms:
|
70 |
+
st.warning(f"Chunk {index} is too short to be processed.")
|
71 |
+
return (index, "")
|
72 |
+
# Save chunk temporarily as a WAV file
|
73 |
+
with NamedTemporaryFile(delete=False, suffix=".wav") as temp_audio_file:
|
74 |
+
chunk.export(temp_audio_file.name, format="wav")
|
75 |
+
temp_audio_file_path = temp_audio_file.name
|
76 |
+
status_placeholder.info(f"Transcribing chunk {index}...")
|
77 |
+
transcription = transcribe(temp_audio_file_path)
|
78 |
+
os.remove(temp_audio_file_path)
|
79 |
+
st.write(f"Transcription for chunk {index}: {transcription}")
|
80 |
+
return (index, transcription)
|
81 |
+
|
82 |
def process_audio_chunks(audio_chunks):
|
83 |
"""
|
84 |
+
Process and transcribe each audio chunk in sequence.
|
85 |
+
Reports the total time taken.
|
|
|
|
|
|
|
|
|
|
|
86 |
"""
|
87 |
transcriptions = []
|
88 |
+
min_length_ms = 100 # minimum duration for processing
|
89 |
+
start_transcription = time.time()
|
90 |
for i, chunk in enumerate(audio_chunks):
|
91 |
+
index, text = transcribe_chunk(chunk, i, min_length_ms)
|
92 |
+
transcriptions.append((index, text))
|
93 |
+
transcriptions.sort(key=lambda x: x[0])
|
94 |
+
total_time = time.time() - start_transcription
|
95 |
+
status_placeholder.info(f"All chunks transcribed in {total_time:.2f} seconds.")
|
96 |
+
combined = " ".join([text for idx, text in transcriptions])
|
97 |
+
return combined
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
|
99 |
def save_transcription_to_docx(transcription, audio_file_path):
|
100 |
"""
|
101 |
Save the transcription as a .docx file.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
"""
|
103 |
base_name = os.path.splitext(os.path.basename(audio_file_path))[0]
|
104 |
output_file_name = f"{base_name}_full_transcription.docx"
|
105 |
+
status_placeholder.info("Saving transcription to DOCX...")
|
106 |
doc = Document()
|
107 |
doc.add_paragraph(transcription)
|
108 |
doc.save(output_file_name)
|
109 |
+
status_placeholder.info("Transcription saved as DOCX.")
|
110 |
return output_file_name
|
111 |
|
112 |
st.title("Audio Transcription with Whisper (Local via Hugging Face)")
|
|
|
126 |
with open(temp_audio_file, "wb") as f:
|
127 |
f.write(uploaded_file.getbuffer())
|
128 |
|
129 |
+
processing_start = time.time()
|
130 |
+
with st.spinner('Processing audio...'):
|
131 |
+
audio_chunks = split_audio_on_silence(temp_audio_file)
|
|
|
|
|
|
|
|
|
|
|
132 |
transcription = process_audio_chunks(audio_chunks)
|
133 |
if transcription:
|
134 |
st.session_state.transcription = transcription
|
135 |
st.success('Transcription complete!')
|
136 |
output_docx_file = save_transcription_to_docx(transcription, uploaded_file.name)
|
137 |
st.session_state.output_docx_file = output_docx_file
|
138 |
+
processing_duration = time.time() - processing_start
|
139 |
+
status_placeholder.info(f"Total processing time: {processing_duration:.2f} seconds.")
|
140 |
if os.path.exists(temp_audio_file):
|
141 |
os.remove(temp_audio_file)
|
142 |
|