# Import necessary packages from ibm_watsonx_ai import Credentials from ibm_watsonx_ai import APIClient from ibm_watsonx_ai.foundation_models import Model, ModelInference from ibm_watsonx_ai.foundation_models.schema import TextChatParameters from ibm_watsonx_ai.metanames import GenTextParamsMetaNames import gradio as gr watsonx_API="L0sx3BXcQRWNmz45mbBLxL1UiZGnftHFQTwITAci-523" project_id="ed8f7a2c-e597-4a09-a98f-dbdcef57a0d0" # Set credentials to use the model credentials = { "url" : "https://au-syd.ml.cloud.ibm.com", "apikey": watsonx_API } # Model and project settings model_id = "codellama/CodeLlama-7b-Instruct-hf" # Directly specifying the LLAMA3 model project_id = project_id # Specifying project_id as provided params = TextChatParameters( temperature=0.1, max_tokens=1024 ) # Initialize the model model = ModelInference( model_id=model_id, credentials=credentials, project_id=project_id, params=params ) # Function to generate a response from the model def generate_response(prompt_txt): messages = [ { "role": "user", "content": [ { "type": "text", "text": prompt_txt }, ] } ] generated_response = model.chat(messages=messages) generated_text = generated_response['choices'][0]['message']['content'] return generated_text # Create Gradio interface chat_application = gr.Interface( fn=generate_response, flagging_mode="never", inputs=gr.Textbox(label="Input", lines=2, placeholder="Type your question here..."), outputs=gr.Textbox(label="Output"), title="CodeLLama Chatbot", description="Ask coding related questions and the chatbot will try to answer." ) # Launch the app chat_application.launch(share=True)