Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
import os
|
2 |
-
from threading import Thread
|
3 |
from dotenv import load_dotenv
|
4 |
load_dotenv()
|
5 |
|
@@ -9,7 +8,7 @@ from newsapi import NewsApiClient
|
|
9 |
import pandas as pd
|
10 |
import torch
|
11 |
import soundfile as sf
|
12 |
-
|
13 |
from transformers import (
|
14 |
AutoModelForSequenceClassification, AutoTokenizer, pipeline,
|
15 |
BartTokenizer, BartForConditionalGeneration,
|
@@ -22,17 +21,12 @@ from transformers import (
|
|
22 |
# -------------------------
|
23 |
NEWS_API_KEY = os.getenv("NEWS_API_KEY") # Set this in your .env file
|
24 |
|
25 |
-
# Set device for Torch models
|
26 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
27 |
|
28 |
# -------------------------
|
29 |
-
#
|
30 |
# -------------------------
|
31 |
def fetch_and_scrape_news(company, api_key, count=11, output_file='news_articles.xlsx'):
|
32 |
-
"""
|
33 |
-
Fetch news article URLs related to a given company using News API,
|
34 |
-
scrape each for headline and content, and save the results to an Excel file.
|
35 |
-
"""
|
36 |
newsapi = NewsApiClient(api_key=api_key)
|
37 |
all_articles = newsapi.get_everything(q=company, language='en', sort_by='relevancy', page_size=count)
|
38 |
articles = all_articles.get('articles', [])
|
@@ -49,11 +43,9 @@ def fetch_and_scrape_news(company, api_key, count=11, output_file='news_articles
|
|
49 |
df = pd.DataFrame(scraped_data)
|
50 |
df.to_excel(output_file, index=False, header=True)
|
51 |
print(f"News scraping complete. Data saved to {output_file}")
|
|
|
52 |
|
53 |
def scrape_news(url):
|
54 |
-
"""
|
55 |
-
Scrape the news article for headline and content.
|
56 |
-
"""
|
57 |
headers = {"User-Agent": "Mozilla/5.0"}
|
58 |
response = requests.get(url, headers=headers)
|
59 |
if response.status_code != 200:
|
@@ -66,7 +58,7 @@ def scrape_news(url):
|
|
66 |
return {"headline": headline, "content": article_text}
|
67 |
|
68 |
# -------------------------
|
69 |
-
#
|
70 |
# -------------------------
|
71 |
sentiment_model_name = "cross-encoder/nli-distilroberta-base"
|
72 |
sentiment_model = AutoModelForSequenceClassification.from_pretrained(
|
@@ -79,7 +71,7 @@ classifier = pipeline("zero-shot-classification", model=sentiment_model, tokeniz
|
|
79 |
labels = ["positive", "negative", "neutral"]
|
80 |
|
81 |
# -------------------------
|
82 |
-
#
|
83 |
# -------------------------
|
84 |
bart_tokenizer = BartTokenizer.from_pretrained('facebook/bart-large-cnn')
|
85 |
bart_model = BartForConditionalGeneration.from_pretrained('facebook/bart-large-cnn')
|
@@ -103,7 +95,7 @@ def split_into_chunks(text, tokenizer, max_tokens=1024):
|
|
103 |
return chunks
|
104 |
|
105 |
# -------------------------
|
106 |
-
#
|
107 |
# -------------------------
|
108 |
translation_model_name = 'Helsinki-NLP/opus-mt-en-hi'
|
109 |
trans_tokenizer = MarianTokenizer.from_pretrained(translation_model_name)
|
@@ -115,13 +107,13 @@ def translate_text(text):
|
|
115 |
return trans_tokenizer.decode(translated[0], skip_special_tokens=True)
|
116 |
|
117 |
# -------------------------
|
118 |
-
#
|
119 |
# -------------------------
|
120 |
bark_model = BarkModel.from_pretrained("suno/bark-small").to(device)
|
121 |
processor = AutoProcessor.from_pretrained("suno/bark")
|
122 |
|
123 |
# -------------------------
|
124 |
-
#
|
125 |
# -------------------------
|
126 |
def process_company(company):
|
127 |
# Step 1: Fetch and scrape news
|
@@ -130,7 +122,7 @@ def process_company(company):
|
|
130 |
print("Scraped Articles:")
|
131 |
print(df)
|
132 |
|
133 |
-
|
134 |
for index, row in df.iterrows():
|
135 |
article_text = row.get("content", "")
|
136 |
title = row.get("headline", "No title")
|
@@ -145,73 +137,60 @@ def process_company(company):
|
|
145 |
final_summary = ' '.join(chunk_summaries)
|
146 |
sentiment_result = classifier(final_summary, labels)
|
147 |
sentiment = sentiment_result["labels"][0]
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
|
|
|
|
|
|
152 |
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
"Sentiment"
|
157 |
-
|
158 |
-
})
|
159 |
-
final_df["Translated Summary"] = final_df["Summary"].apply(translate_text)
|
160 |
-
final_df.to_excel('translated_news_articles.xlsx', index=False)
|
161 |
-
print("Final processed data with translations:")
|
162 |
-
print(final_df)
|
163 |
|
164 |
-
#
|
165 |
-
|
166 |
-
|
167 |
inputs = processor(final_translated_text, return_tensors="pt").to(device)
|
168 |
speech_output = bark_model.generate(**inputs)
|
169 |
audio_path = "final_summary.wav"
|
170 |
sf.write(audio_path, speech_output[0].cpu().numpy(), bark_model.generation_config.sample_rate)
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
# -------------------------
|
189 |
-
# Part 8: Gradio Interface Setup
|
190 |
-
# -------------------------
|
191 |
def gradio_interface(company):
|
192 |
-
|
193 |
-
|
194 |
-
result = response.json()
|
195 |
-
# Return the audio file path; Gradio's audio output type will read the file.
|
196 |
-
return result.get("audio_path")
|
197 |
-
|
198 |
-
def launch_gradio():
|
199 |
-
import gradio as gr
|
200 |
-
iface = gr.Interface(
|
201 |
-
fn=gradio_interface,
|
202 |
-
inputs=gr.Textbox(label="Enter Company Name"),
|
203 |
-
outputs=gr.Audio(type="filepath", label="News Summary Audio (Hindi)"),
|
204 |
-
title="News Summarization & TTS",
|
205 |
-
description="Enter a company name to fetch news, generate a Hindi summary, and listen to the audio."
|
206 |
-
)
|
207 |
-
iface.launch()
|
208 |
|
209 |
# -------------------------
|
210 |
-
#
|
211 |
# -------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
212 |
if __name__ == "__main__":
|
213 |
-
|
214 |
-
flask_thread = Thread(target=lambda: app.run(host="0.0.0.0", port=5000, debug=False, use_reloader=False))
|
215 |
-
flask_thread.start()
|
216 |
-
# Launch the Gradio interface.
|
217 |
-
launch_gradio()
|
|
|
1 |
import os
|
|
|
2 |
from dotenv import load_dotenv
|
3 |
load_dotenv()
|
4 |
|
|
|
8 |
import pandas as pd
|
9 |
import torch
|
10 |
import soundfile as sf
|
11 |
+
import gradio as gr
|
12 |
from transformers import (
|
13 |
AutoModelForSequenceClassification, AutoTokenizer, pipeline,
|
14 |
BartTokenizer, BartForConditionalGeneration,
|
|
|
21 |
# -------------------------
|
22 |
NEWS_API_KEY = os.getenv("NEWS_API_KEY") # Set this in your .env file
|
23 |
|
|
|
24 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
25 |
|
26 |
# -------------------------
|
27 |
+
# News Extraction Functions
|
28 |
# -------------------------
|
29 |
def fetch_and_scrape_news(company, api_key, count=11, output_file='news_articles.xlsx'):
|
|
|
|
|
|
|
|
|
30 |
newsapi = NewsApiClient(api_key=api_key)
|
31 |
all_articles = newsapi.get_everything(q=company, language='en', sort_by='relevancy', page_size=count)
|
32 |
articles = all_articles.get('articles', [])
|
|
|
43 |
df = pd.DataFrame(scraped_data)
|
44 |
df.to_excel(output_file, index=False, header=True)
|
45 |
print(f"News scraping complete. Data saved to {output_file}")
|
46 |
+
return df
|
47 |
|
48 |
def scrape_news(url):
|
|
|
|
|
|
|
49 |
headers = {"User-Agent": "Mozilla/5.0"}
|
50 |
response = requests.get(url, headers=headers)
|
51 |
if response.status_code != 200:
|
|
|
58 |
return {"headline": headline, "content": article_text}
|
59 |
|
60 |
# -------------------------
|
61 |
+
# Sentiment Analysis Setup
|
62 |
# -------------------------
|
63 |
sentiment_model_name = "cross-encoder/nli-distilroberta-base"
|
64 |
sentiment_model = AutoModelForSequenceClassification.from_pretrained(
|
|
|
71 |
labels = ["positive", "negative", "neutral"]
|
72 |
|
73 |
# -------------------------
|
74 |
+
# Summarization Setup
|
75 |
# -------------------------
|
76 |
bart_tokenizer = BartTokenizer.from_pretrained('facebook/bart-large-cnn')
|
77 |
bart_model = BartForConditionalGeneration.from_pretrained('facebook/bart-large-cnn')
|
|
|
95 |
return chunks
|
96 |
|
97 |
# -------------------------
|
98 |
+
# Translation Setup (English to Hindi)
|
99 |
# -------------------------
|
100 |
translation_model_name = 'Helsinki-NLP/opus-mt-en-hi'
|
101 |
trans_tokenizer = MarianTokenizer.from_pretrained(translation_model_name)
|
|
|
107 |
return trans_tokenizer.decode(translated[0], skip_special_tokens=True)
|
108 |
|
109 |
# -------------------------
|
110 |
+
# Bark TTS Setup (Hindi)
|
111 |
# -------------------------
|
112 |
bark_model = BarkModel.from_pretrained("suno/bark-small").to(device)
|
113 |
processor = AutoProcessor.from_pretrained("suno/bark")
|
114 |
|
115 |
# -------------------------
|
116 |
+
# Main Pipeline Function
|
117 |
# -------------------------
|
118 |
def process_company(company):
|
119 |
# Step 1: Fetch and scrape news
|
|
|
122 |
print("Scraped Articles:")
|
123 |
print(df)
|
124 |
|
125 |
+
articles_data = []
|
126 |
for index, row in df.iterrows():
|
127 |
article_text = row.get("content", "")
|
128 |
title = row.get("headline", "No title")
|
|
|
137 |
final_summary = ' '.join(chunk_summaries)
|
138 |
sentiment_result = classifier(final_summary, labels)
|
139 |
sentiment = sentiment_result["labels"][0]
|
140 |
+
|
141 |
+
articles_data.append({
|
142 |
+
"Title": title,
|
143 |
+
"Summary": final_summary,
|
144 |
+
"Sentiment": sentiment,
|
145 |
+
"URL": url
|
146 |
+
})
|
147 |
|
148 |
+
# Comparative Analysis: Build a simple sentiment distribution
|
149 |
+
sentiment_distribution = {"Positive": 0, "Negative": 0, "Neutral": 0}
|
150 |
+
for article in articles_data:
|
151 |
+
key = article["Sentiment"].capitalize()
|
152 |
+
sentiment_distribution[key] += 1
|
|
|
|
|
|
|
|
|
|
|
153 |
|
154 |
+
# Step 2: Translate summaries and generate Hindi speech
|
155 |
+
translated_summaries = [translate_text(article["Summary"]) for article in articles_data]
|
156 |
+
final_translated_text = "\n\n".join(translated_summaries)
|
157 |
inputs = processor(final_translated_text, return_tensors="pt").to(device)
|
158 |
speech_output = bark_model.generate(**inputs)
|
159 |
audio_path = "final_summary.wav"
|
160 |
sf.write(audio_path, speech_output[0].cpu().numpy(), bark_model.generation_config.sample_rate)
|
161 |
+
|
162 |
+
# Build final report
|
163 |
+
report = {
|
164 |
+
"Company": company,
|
165 |
+
"Articles": articles_data,
|
166 |
+
"Comparative Sentiment Score": {
|
167 |
+
"Sentiment Distribution": sentiment_distribution,
|
168 |
+
"Coverage Differences": "Detailed comparative analysis not implemented",
|
169 |
+
"Topic Overlap": "Topic extraction not implemented"
|
170 |
+
},
|
171 |
+
"Final Sentiment Analysis": "Overall sentiment analysis not fully computed",
|
172 |
+
"Audio": audio_path
|
173 |
+
}
|
174 |
+
return report, audio_path
|
175 |
+
|
176 |
+
# Gradio Interface Function
|
|
|
|
|
|
|
|
|
177 |
def gradio_interface(company):
|
178 |
+
report, audio_path = process_company(company)
|
179 |
+
return report, audio_path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
|
181 |
# -------------------------
|
182 |
+
# Gradio UI Setup
|
183 |
# -------------------------
|
184 |
+
iface = gr.Interface(
|
185 |
+
fn=gradio_interface,
|
186 |
+
inputs=gr.Textbox(label="Enter Company Name"),
|
187 |
+
outputs=[
|
188 |
+
gr.JSON(label="News Sentiment Report"),
|
189 |
+
gr.Audio(type="filepath", label="Hindi Summary Audio")
|
190 |
+
],
|
191 |
+
title="News Summarization & Text-to-Speech",
|
192 |
+
description="Enter a company name to fetch news articles, perform sentiment analysis, and listen to a Hindi TTS summary."
|
193 |
+
)
|
194 |
+
|
195 |
if __name__ == "__main__":
|
196 |
+
iface.launch()
|
|
|
|
|
|
|
|