Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
import os
|
2 |
from dotenv import load_dotenv
|
3 |
load_dotenv()
|
4 |
|
@@ -15,31 +15,34 @@ from transformers import (
|
|
15 |
MarianMTModel, MarianTokenizer,
|
16 |
BarkModel, AutoProcessor
|
17 |
)
|
|
|
|
|
18 |
|
19 |
# -------------------------
|
20 |
# Global Setup and Environment Variables
|
21 |
# -------------------------
|
22 |
NEWS_API_KEY = os.getenv("NEWS_API_KEY") # Set this in your .env file
|
23 |
-
|
24 |
-
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
25 |
|
26 |
# -------------------------
|
27 |
# News Extraction Functions
|
28 |
# -------------------------
|
29 |
-
def fetch_and_scrape_news(company, api_key, count=
|
|
|
30 |
newsapi = NewsApiClient(api_key=api_key)
|
31 |
all_articles = newsapi.get_everything(q=company, language='en', sort_by='relevancy', page_size=count)
|
32 |
articles = all_articles.get('articles', [])
|
33 |
|
34 |
scraped_data = []
|
35 |
-
|
|
|
36 |
url = article.get('url')
|
37 |
if url:
|
|
|
38 |
scraped_article = scrape_news(url)
|
39 |
if scraped_article:
|
40 |
scraped_article['url'] = url
|
41 |
scraped_data.append(scraped_article)
|
42 |
-
|
43 |
df = pd.DataFrame(scraped_data)
|
44 |
df.to_excel(output_file, index=False, header=True)
|
45 |
print(f"News scraping complete. Data saved to {output_file}")
|
@@ -47,9 +50,11 @@ def fetch_and_scrape_news(company, api_key, count=11, output_file='news_articles
|
|
47 |
|
48 |
def scrape_news(url):
|
49 |
headers = {"User-Agent": "Mozilla/5.0"}
|
50 |
-
|
51 |
-
|
52 |
-
|
|
|
|
|
53 |
return None
|
54 |
soup = BeautifulSoup(response.text, "html.parser")
|
55 |
headline = soup.find("h1").get_text(strip=True) if soup.find("h1") else "No headline found"
|
@@ -60,19 +65,20 @@ def scrape_news(url):
|
|
60 |
# -------------------------
|
61 |
# Sentiment Analysis Setup
|
62 |
# -------------------------
|
|
|
63 |
sentiment_model_name = "cross-encoder/nli-distilroberta-base"
|
64 |
sentiment_model = AutoModelForSequenceClassification.from_pretrained(
|
65 |
sentiment_model_name,
|
66 |
-
torch_dtype=torch.
|
67 |
-
device_map="auto"
|
68 |
)
|
69 |
sentiment_tokenizer = AutoTokenizer.from_pretrained(sentiment_model_name)
|
70 |
-
classifier = pipeline("zero-shot-classification", model=sentiment_model, tokenizer=sentiment_tokenizer)
|
71 |
labels = ["positive", "negative", "neutral"]
|
72 |
|
73 |
# -------------------------
|
74 |
# Summarization Setup
|
75 |
# -------------------------
|
|
|
76 |
bart_tokenizer = BartTokenizer.from_pretrained('facebook/bart-large-cnn')
|
77 |
bart_model = BartForConditionalGeneration.from_pretrained('facebook/bart-large-cnn')
|
78 |
|
@@ -97,6 +103,7 @@ def split_into_chunks(text, tokenizer, max_tokens=1024):
|
|
97 |
# -------------------------
|
98 |
# Translation Setup (English to Hindi)
|
99 |
# -------------------------
|
|
|
100 |
translation_model_name = 'Helsinki-NLP/opus-mt-en-hi'
|
101 |
trans_tokenizer = MarianTokenizer.from_pretrained(translation_model_name)
|
102 |
trans_model = MarianMTModel.from_pretrained(translation_model_name)
|
@@ -109,14 +116,29 @@ def translate_text(text):
|
|
109 |
# -------------------------
|
110 |
# Bark TTS Setup (Hindi)
|
111 |
# -------------------------
|
112 |
-
|
|
|
|
|
113 |
processor = AutoProcessor.from_pretrained("suno/bark")
|
114 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
# -------------------------
|
116 |
# Main Pipeline Function
|
117 |
# -------------------------
|
118 |
def process_company(company):
|
|
|
119 |
# Step 1: Fetch and scrape news
|
|
|
120 |
fetch_and_scrape_news(company, NEWS_API_KEY)
|
121 |
df = pd.read_excel('news_articles.xlsx')
|
122 |
print("Scraped Articles:")
|
@@ -124,17 +146,20 @@ def process_company(company):
|
|
124 |
|
125 |
articles_data = []
|
126 |
for index, row in df.iterrows():
|
|
|
127 |
article_text = row.get("content", "")
|
128 |
title = row.get("headline", "No title")
|
129 |
url = row.get("url", "")
|
130 |
chunks = split_into_chunks(article_text, bart_tokenizer)
|
131 |
chunk_summaries = []
|
132 |
-
for chunk in chunks:
|
|
|
133 |
inputs = bart_tokenizer([chunk], max_length=1024, return_tensors='pt', truncation=True)
|
134 |
-
summary_ids = bart_model.generate(inputs.input_ids, num_beams=
|
135 |
chunk_summary = bart_tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
136 |
chunk_summaries.append(chunk_summary)
|
137 |
final_summary = ' '.join(chunk_summaries)
|
|
|
138 |
sentiment_result = classifier(final_summary, labels)
|
139 |
sentiment = sentiment_result["labels"][0]
|
140 |
|
@@ -150,14 +175,19 @@ def process_company(company):
|
|
150 |
for article in articles_data:
|
151 |
key = article["Sentiment"].capitalize()
|
152 |
sentiment_distribution[key] += 1
|
|
|
153 |
|
154 |
# Step 2: Translate summaries and generate Hindi speech
|
|
|
155 |
translated_summaries = [translate_text(article["Summary"]) for article in articles_data]
|
156 |
final_translated_text = "\n\n".join(translated_summaries)
|
157 |
-
|
|
|
|
|
158 |
speech_output = bark_model.generate(**inputs)
|
159 |
audio_path = "final_summary.wav"
|
160 |
sf.write(audio_path, speech_output[0].cpu().numpy(), bark_model.generation_config.sample_rate)
|
|
|
161 |
|
162 |
# Build final report
|
163 |
report = {
|
@@ -171,10 +201,14 @@ def process_company(company):
|
|
171 |
"Final Sentiment Analysis": "Overall sentiment analysis not fully computed",
|
172 |
"Audio": audio_path
|
173 |
}
|
|
|
174 |
return report, audio_path
|
175 |
|
|
|
176 |
# Gradio Interface Function
|
|
|
177 |
def gradio_interface(company):
|
|
|
178 |
report, audio_path = process_company(company)
|
179 |
return report, audio_path
|
180 |
|
|
|
1 |
+
import os
|
2 |
from dotenv import load_dotenv
|
3 |
load_dotenv()
|
4 |
|
|
|
15 |
MarianMTModel, MarianTokenizer,
|
16 |
BarkModel, AutoProcessor
|
17 |
)
|
18 |
+
import librosa
|
19 |
+
import re
|
20 |
|
21 |
# -------------------------
|
22 |
# Global Setup and Environment Variables
|
23 |
# -------------------------
|
24 |
NEWS_API_KEY = os.getenv("NEWS_API_KEY") # Set this in your .env file
|
25 |
+
device = "cpu" # Force CPU since no GPU is available in Hugging Face Spaces
|
|
|
26 |
|
27 |
# -------------------------
|
28 |
# News Extraction Functions
|
29 |
# -------------------------
|
30 |
+
def fetch_and_scrape_news(company, api_key, count=5, output_file='news_articles.xlsx'):
|
31 |
+
print("Starting news fetch from NewsAPI...")
|
32 |
newsapi = NewsApiClient(api_key=api_key)
|
33 |
all_articles = newsapi.get_everything(q=company, language='en', sort_by='relevancy', page_size=count)
|
34 |
articles = all_articles.get('articles', [])
|
35 |
|
36 |
scraped_data = []
|
37 |
+
print(f"Found {len(articles)} articles. Starting scraping individual articles...")
|
38 |
+
for i, article in enumerate(articles):
|
39 |
url = article.get('url')
|
40 |
if url:
|
41 |
+
print(f"Scraping article {i+1}: {url}")
|
42 |
scraped_article = scrape_news(url)
|
43 |
if scraped_article:
|
44 |
scraped_article['url'] = url
|
45 |
scraped_data.append(scraped_article)
|
|
|
46 |
df = pd.DataFrame(scraped_data)
|
47 |
df.to_excel(output_file, index=False, header=True)
|
48 |
print(f"News scraping complete. Data saved to {output_file}")
|
|
|
50 |
|
51 |
def scrape_news(url):
|
52 |
headers = {"User-Agent": "Mozilla/5.0"}
|
53 |
+
try:
|
54 |
+
response = requests.get(url, headers=headers, timeout=10)
|
55 |
+
response.raise_for_status()
|
56 |
+
except Exception as e:
|
57 |
+
print(f"Failed to fetch the page: {url} ({e})")
|
58 |
return None
|
59 |
soup = BeautifulSoup(response.text, "html.parser")
|
60 |
headline = soup.find("h1").get_text(strip=True) if soup.find("h1") else "No headline found"
|
|
|
65 |
# -------------------------
|
66 |
# Sentiment Analysis Setup
|
67 |
# -------------------------
|
68 |
+
print("Loading sentiment analysis model...")
|
69 |
sentiment_model_name = "cross-encoder/nli-distilroberta-base"
|
70 |
sentiment_model = AutoModelForSequenceClassification.from_pretrained(
|
71 |
sentiment_model_name,
|
72 |
+
torch_dtype=torch.float32
|
|
|
73 |
)
|
74 |
sentiment_tokenizer = AutoTokenizer.from_pretrained(sentiment_model_name)
|
75 |
+
classifier = pipeline("zero-shot-classification", model=sentiment_model, tokenizer=sentiment_tokenizer, device=-1)
|
76 |
labels = ["positive", "negative", "neutral"]
|
77 |
|
78 |
# -------------------------
|
79 |
# Summarization Setup
|
80 |
# -------------------------
|
81 |
+
print("Loading summarization model (BART)...")
|
82 |
bart_tokenizer = BartTokenizer.from_pretrained('facebook/bart-large-cnn')
|
83 |
bart_model = BartForConditionalGeneration.from_pretrained('facebook/bart-large-cnn')
|
84 |
|
|
|
103 |
# -------------------------
|
104 |
# Translation Setup (English to Hindi)
|
105 |
# -------------------------
|
106 |
+
print("Loading translation model (MarianMT)...")
|
107 |
translation_model_name = 'Helsinki-NLP/opus-mt-en-hi'
|
108 |
trans_tokenizer = MarianTokenizer.from_pretrained(translation_model_name)
|
109 |
trans_model = MarianMTModel.from_pretrained(translation_model_name)
|
|
|
116 |
# -------------------------
|
117 |
# Bark TTS Setup (Hindi)
|
118 |
# -------------------------
|
119 |
+
print("Loading Bark TTS model...")
|
120 |
+
bark_model = BarkModel.from_pretrained("suno/bark-small")
|
121 |
+
bark_model.to(device)
|
122 |
processor = AutoProcessor.from_pretrained("suno/bark")
|
123 |
|
124 |
+
# -------------------------
|
125 |
+
# Helper Functions for Audio and Text Preprocessing
|
126 |
+
# -------------------------
|
127 |
+
def normalize_text(text):
|
128 |
+
return re.sub(r"[^\w\s]", "", text.lower()).strip()
|
129 |
+
|
130 |
+
def resample_audio(audio_array, orig_sr, target_sr=16000):
|
131 |
+
if orig_sr != target_sr:
|
132 |
+
audio_array = librosa.resample(audio_array, orig_sr=orig_sr, target_sr=target_sr)
|
133 |
+
return audio_array
|
134 |
+
|
135 |
# -------------------------
|
136 |
# Main Pipeline Function
|
137 |
# -------------------------
|
138 |
def process_company(company):
|
139 |
+
print(f"Processing company: {company}")
|
140 |
# Step 1: Fetch and scrape news
|
141 |
+
print("Fetching and scraping news...")
|
142 |
fetch_and_scrape_news(company, NEWS_API_KEY)
|
143 |
df = pd.read_excel('news_articles.xlsx')
|
144 |
print("Scraped Articles:")
|
|
|
146 |
|
147 |
articles_data = []
|
148 |
for index, row in df.iterrows():
|
149 |
+
print(f"Processing article {index+1}...")
|
150 |
article_text = row.get("content", "")
|
151 |
title = row.get("headline", "No title")
|
152 |
url = row.get("url", "")
|
153 |
chunks = split_into_chunks(article_text, bart_tokenizer)
|
154 |
chunk_summaries = []
|
155 |
+
for i, chunk in enumerate(chunks):
|
156 |
+
print(f"Summarizing chunk {i+1}/{len(chunks)}...")
|
157 |
inputs = bart_tokenizer([chunk], max_length=1024, return_tensors='pt', truncation=True)
|
158 |
+
summary_ids = bart_model.generate(inputs.input_ids, num_beams=2, max_length=130, min_length=30, early_stopping=True)
|
159 |
chunk_summary = bart_tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
160 |
chunk_summaries.append(chunk_summary)
|
161 |
final_summary = ' '.join(chunk_summaries)
|
162 |
+
print("Performing sentiment analysis...")
|
163 |
sentiment_result = classifier(final_summary, labels)
|
164 |
sentiment = sentiment_result["labels"][0]
|
165 |
|
|
|
175 |
for article in articles_data:
|
176 |
key = article["Sentiment"].capitalize()
|
177 |
sentiment_distribution[key] += 1
|
178 |
+
print("Sentiment distribution computed.")
|
179 |
|
180 |
# Step 2: Translate summaries and generate Hindi speech
|
181 |
+
print("Translating summaries to Hindi...")
|
182 |
translated_summaries = [translate_text(article["Summary"]) for article in articles_data]
|
183 |
final_translated_text = "\n\n".join(translated_summaries)
|
184 |
+
|
185 |
+
print("Generating Hindi speech with Bark TTS...")
|
186 |
+
inputs = processor(final_translated_text, return_tensors="pt")
|
187 |
speech_output = bark_model.generate(**inputs)
|
188 |
audio_path = "final_summary.wav"
|
189 |
sf.write(audio_path, speech_output[0].cpu().numpy(), bark_model.generation_config.sample_rate)
|
190 |
+
print("Audio generated and saved.")
|
191 |
|
192 |
# Build final report
|
193 |
report = {
|
|
|
201 |
"Final Sentiment Analysis": "Overall sentiment analysis not fully computed",
|
202 |
"Audio": audio_path
|
203 |
}
|
204 |
+
print("Final report prepared.")
|
205 |
return report, audio_path
|
206 |
|
207 |
+
# -------------------------
|
208 |
# Gradio Interface Function
|
209 |
+
# -------------------------
|
210 |
def gradio_interface(company):
|
211 |
+
print(f"Received input: {company}")
|
212 |
report, audio_path = process_company(company)
|
213 |
return report, audio_path
|
214 |
|