RAG / worker.py
Deepakraj2006's picture
Update worker.py
c434da9 verified
raw
history blame
2.62 kB
import os
import torch
from langchain.chains import ConversationalRetrievalChain
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.document_loaders import PyPDFLoader
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain_community.llms import HuggingFacePipeline
from transformers import pipeline
# Set a writable cache directory
os.environ["HF_HOME"] = "./huggingface_cache"
# Check for GPU availability
DEVICE = "cuda:0" if torch.cuda.is_available() else "cpu"
# Global variables
conversation_retrieval_chain = None
chat_history = []
llm_pipeline = None
embeddings = None
def init_llm():
global llm_pipeline, embeddings
# Ensure API key is set in Hugging Face Spaces
hf_token = os.getenv("HUGGINGFACEHUB_API_TOKEN")
if not hf_token:
raise ValueError("HUGGINGFACEHUB_API_TOKEN is not set in environment variables.")
model_id = "tiiuae/falcon-7b-instruct"
hf_pipeline = pipeline("text-generation", model=model_id, device=DEVICE)
llm_pipeline = HuggingFacePipeline(pipeline=hf_pipeline)
embeddings = HuggingFaceEmbeddings(
model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={"device": DEVICE}
)
def process_document(document_path):
global conversation_retrieval_chain
# Ensure LLM and embeddings are initialized
if not llm_pipeline or not embeddings:
init_llm()
loader = PyPDFLoader(document_path)
documents = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1024, chunk_overlap=64)
texts = text_splitter.split_documents(documents)
# Load or create ChromaDB
persist_directory = "./chroma_db"
if os.path.exists(persist_directory):
db = Chroma(persist_directory=persist_directory, embedding_function=embeddings)
else:
db = Chroma.from_documents(texts, embedding=embeddings, persist_directory=persist_directory)
retriever = db.as_retriever(search_type="similarity", search_kwargs={'k': 6})
conversation_retrieval_chain = ConversationalRetrievalChain.from_llm(
llm=llm_pipeline, retriever=retriever
)
def process_prompt(prompt):
global conversation_retrieval_chain, chat_history
if not conversation_retrieval_chain:
return "No document has been processed yet. Please upload a PDF first."
output = conversation_retrieval_chain({"question": prompt, "chat_history": chat_history})
answer = output["answer"]
chat_history.append((prompt, answer))
return answer