Spaces:
Runtime error
Runtime error
import os | |
import torch | |
from langchain.chains import ConversationalRetrievalChain | |
from langchain_community.embeddings import HuggingFaceEmbeddings | |
from langchain_community.document_loaders import PyPDFLoader | |
from langchain_text_splitters import RecursiveCharacterTextSplitter | |
from langchain_community.vectorstores import Chroma | |
from langchain_community.llms import HuggingFacePipeline | |
from transformers import pipeline | |
# Set a writable cache directory | |
os.environ["HF_HOME"] = "./huggingface_cache" | |
# Check for GPU availability | |
DEVICE = "cuda:0" if torch.cuda.is_available() else "cpu" | |
# Global variables | |
conversation_retrieval_chain = None | |
chat_history = [] | |
llm_pipeline = None | |
embeddings = None | |
def init_llm(): | |
global llm_pipeline, embeddings | |
# Ensure API key is set in Hugging Face Spaces | |
hf_token = os.getenv("HUGGINGFACEHUB_API_TOKEN") | |
if not hf_token: | |
raise ValueError("HUGGINGFACEHUB_API_TOKEN is not set in environment variables.") | |
model_id = "tiiuae/falcon-7b-instruct" | |
hf_pipeline = pipeline("text-generation", model=model_id, device=DEVICE) | |
llm_pipeline = HuggingFacePipeline(pipeline=hf_pipeline) | |
embeddings = HuggingFaceEmbeddings( | |
model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={"device": DEVICE} | |
) | |
def process_document(document_path): | |
global conversation_retrieval_chain | |
# Ensure LLM and embeddings are initialized | |
if not llm_pipeline or not embeddings: | |
init_llm() | |
loader = PyPDFLoader(document_path) | |
documents = loader.load() | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1024, chunk_overlap=64) | |
texts = text_splitter.split_documents(documents) | |
# Load or create ChromaDB | |
persist_directory = "./chroma_db" | |
if os.path.exists(persist_directory): | |
db = Chroma(persist_directory=persist_directory, embedding_function=embeddings) | |
else: | |
db = Chroma.from_documents(texts, embedding=embeddings, persist_directory=persist_directory) | |
retriever = db.as_retriever(search_type="similarity", search_kwargs={'k': 6}) | |
conversation_retrieval_chain = ConversationalRetrievalChain.from_llm( | |
llm=llm_pipeline, retriever=retriever | |
) | |
def process_prompt(prompt): | |
global conversation_retrieval_chain, chat_history | |
if not conversation_retrieval_chain: | |
return "No document has been processed yet. Please upload a PDF first." | |
output = conversation_retrieval_chain({"question": prompt, "chat_history": chat_history}) | |
answer = output["answer"] | |
chat_history.append((prompt, answer)) | |
return answer | |