import os import torch from langchain.chains import ConversationalRetrievalChain from langchain_community.embeddings import HuggingFaceEmbeddings from langchain_community.document_loaders import PyPDFLoader from langchain_text_splitters import RecursiveCharacterTextSplitter from langchain_community.vectorstores import Chroma from langchain_community.llms import HuggingFacePipeline from transformers import pipeline # Check for GPU availability DEVICE = "cuda:0" if torch.cuda.is_available() else "cpu" # Global variables conversation_retrieval_chain = None chat_history = [] llm_pipeline = None embeddings = None def init_llm(): global llm_pipeline, embeddings # Ensure API key is set in Hugging Face Spaces hf_token = os.getenv("HUGGINGFACEHUB_API_TOKEN") if not hf_token: raise ValueError("HUGGINGFACEHUB_API_TOKEN is not set in environment variables.") model_id = "tiiuae/falcon-7b-instruct" hf_pipeline = pipeline("text-generation", model=model_id, device=DEVICE) llm_pipeline = HuggingFacePipeline(pipeline=hf_pipeline) embeddings = HuggingFaceEmbeddings( model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={"device": DEVICE} ) def process_document(document_path): global conversation_retrieval_chain # Ensure LLM and embeddings are initialized if not llm_pipeline or not embeddings: init_llm() loader = PyPDFLoader(document_path) documents = loader.load() text_splitter = RecursiveCharacterTextSplitter(chunk_size=1024, chunk_overlap=64) texts = text_splitter.split_documents(documents) # Load or create ChromaDB persist_directory = "./chroma_db" if os.path.exists(persist_directory): db = Chroma(persist_directory=persist_directory, embedding_function=embeddings) else: db = Chroma.from_documents(texts, embedding=embeddings, persist_directory=persist_directory) retriever = db.as_retriever(search_type="similarity", search_kwargs={'k': 6}) conversation_retrieval_chain = ConversationalRetrievalChain.from_llm( llm=llm_pipeline, retriever=retriever ) def process_prompt(prompt): global conversation_retrieval_chain, chat_history if not conversation_retrieval_chain: return "No document has been processed yet. Please upload a PDF first." output = conversation_retrieval_chain({"question": prompt, "chat_history": chat_history}) answer = output["answer"] chat_history.append((prompt, answer)) return answer