Spaces:
Running
Running
File size: 4,190 Bytes
6357e8e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 |
import os
import gradio as gr
import torch
from langchain.chains import ConversationalRetrievalChain
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.document_loaders import PyPDFLoader
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain_community.llms import HuggingFacePipeline
from transformers import pipeline
# Set Hugging Face Cache Directory
os.environ["HF_HOME"] = "/tmp/huggingface_cache"
# Check for GPU availability
DEVICE = "cuda:0" if torch.cuda.is_available() else "cpu"
# Global variables
conversation_retrieval_chain = None
chat_history = []
llm_pipeline = None
embeddings = None
persist_directory = "/tmp/chroma_db" # Storage for vector DB
def init_llm():
"""Initialize LLM and Embeddings"""
global llm_pipeline, embeddings
hf_token = os.getenv("HUGGINGFACEHUB_API_TOKEN")
if not hf_token:
raise ValueError("HUGGINGFACEHUB_API_TOKEN is not set in environment variables.")
model_id = "tiiuae/falcon-7b-instruct"
hf_pipeline = pipeline("text-generation", model=model_id, device=DEVICE)
llm_pipeline = HuggingFacePipeline(pipeline=hf_pipeline)
embeddings = HuggingFaceEmbeddings(
model_name="sentence-transformers/all-MiniLM-L6-v2",
model_kwargs={"device": DEVICE}
)
def process_document(file):
"""Process uploaded PDF and create a retriever"""
global conversation_retrieval_chain
if not llm_pipeline or not embeddings:
init_llm()
# Load PDF and split text
loader = PyPDFLoader(file.name)
documents = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1024, chunk_overlap=64)
texts = text_splitter.split_documents(documents)
# Load or create ChromaDB
if os.path.exists(persist_directory):
db = Chroma(persist_directory=persist_directory, embedding_function=embeddings)
else:
db = Chroma.from_documents(texts, embedding=embeddings, persist_directory=persist_directory)
retriever = db.as_retriever(search_type="similarity", search_kwargs={'k': 6})
# Initialize ConversationalRetrievalChain
conversation_retrieval_chain = ConversationalRetrievalChain.from_llm(
llm=llm_pipeline, retriever=retriever
)
return "π PDF uploaded and processed successfully! You can now ask questions."
def process_prompt(prompt, chat_history_display):
"""Generate a response using the retrieval chain"""
global conversation_retrieval_chain, chat_history
if not conversation_retrieval_chain:
return chat_history_display + [("β No document uploaded.", "Please upload a PDF first.")]
output = conversation_retrieval_chain({"question": prompt, "chat_history": chat_history})
answer = output["answer"]
chat_history.append((prompt, answer))
return chat_history
# Define Gradio UI
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("<h1 style='text-align: center;'>Personal Data Assistant</h1>")
with gr.Row():
dark_mode = gr.Checkbox(label="π Toggle light/dark mode")
with gr.Row():
with gr.Box():
gr.Markdown("Hello there! I'm your friendly data assistant, ready to answer any questions regarding your data. Could you please upload a PDF file for me to analyze?")
file_input = gr.File(label="Upload File")
upload_button = gr.Button("π Upload File")
status_output = gr.Textbox(label="Status", interactive=False)
chat_history_display = gr.Chatbot(label="Chat History")
with gr.Row():
user_input = gr.Textbox(placeholder="Type your message here...", scale=4)
submit_button = gr.Button("π©", scale=1)
clear_button = gr.Button("π", scale=1)
# Button Click Actions
upload_button.click(process_document, inputs=file_input, outputs=status_output)
submit_button.click(process_prompt, inputs=[user_input, chat_history_display], outputs=chat_history_display)
clear_button.click(lambda: [], outputs=chat_history_display)
# Launch Gradio App
if __name__ == "__main__":
demo.launch(share=True)
|