Deepakraj2006 commited on
Commit
9c52f94
·
verified ·
1 Parent(s): d3f2dbf

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -5
app.py CHANGED
@@ -36,9 +36,15 @@ def init_llm():
36
  raise ValueError("HUGGINGFACEHUB_API_TOKEN is not set in environment variables.")
37
 
38
  model_id = "tiiuae/falcon-rw-1b" # ✅ Can switch to "tiiuae/falcon-rw-1b" for lighter model
39
- hf_pipeline = pipeline("text-generation", model=model_id, device=DEVICE)
 
 
 
 
 
 
40
  llm_pipeline = HuggingFacePipeline(pipeline=hf_pipeline)
41
-
42
  embeddings = HuggingFaceEmbeddings(
43
  model_name="sentence-transformers/all-MiniLM-L6-v2",
44
  model_kwargs={"device": DEVICE}
@@ -63,7 +69,7 @@ def process_document(file):
63
 
64
  # Load or create ChromaDB
65
  db = Chroma.from_documents(texts, embedding=embeddings, persist_directory=persist_directory)
66
- retriever = db.as_retriever(search_type="similarity", search_kwargs={'k': 6})
67
 
68
  conversation_retrieval_chain = ConversationalRetrievalChain.from_llm(
69
  llm=llm_pipeline, retriever=retriever
@@ -82,11 +88,11 @@ def process_prompt(prompt, chat_history_display):
82
  if not conversation_retrieval_chain:
83
  return chat_history_display + [("❌ No document uploaded.", "Please upload a PDF first.")]
84
 
85
- output = conversation_retrieval_chain({"question": prompt, "chat_history": chat_history})
86
  answer = output["answer"]
87
 
88
  chat_history.append((prompt, answer))
89
- return chat_history
90
 
91
  # Define Gradio UI
92
  with gr.Blocks(theme=gr.themes.Soft()) as demo:
 
36
  raise ValueError("HUGGINGFACEHUB_API_TOKEN is not set in environment variables.")
37
 
38
  model_id = "tiiuae/falcon-rw-1b" # ✅ Can switch to "tiiuae/falcon-rw-1b" for lighter model
39
+ hf_pipeline = pipeline(
40
+ "text-generation",
41
+ model=model_id,
42
+ device=DEVICE,
43
+ max_new_tokens=512 # Increase this as needed
44
+ )
45
+
46
  llm_pipeline = HuggingFacePipeline(pipeline=hf_pipeline)
47
+
48
  embeddings = HuggingFaceEmbeddings(
49
  model_name="sentence-transformers/all-MiniLM-L6-v2",
50
  model_kwargs={"device": DEVICE}
 
69
 
70
  # Load or create ChromaDB
71
  db = Chroma.from_documents(texts, embedding=embeddings, persist_directory=persist_directory)
72
+ retriever = db.as_retriever(search_type="mmr", search_kwargs={'k': 6})
73
 
74
  conversation_retrieval_chain = ConversationalRetrievalChain.from_llm(
75
  llm=llm_pipeline, retriever=retriever
 
88
  if not conversation_retrieval_chain:
89
  return chat_history_display + [("❌ No document uploaded.", "Please upload a PDF first.")]
90
 
91
+ output = conversation_retrieval_chain.invoke({"question": prompt, "chat_history": chat_history})
92
  answer = output["answer"]
93
 
94
  chat_history.append((prompt, answer))
95
+ return answer
96
 
97
  # Define Gradio UI
98
  with gr.Blocks(theme=gr.themes.Soft()) as demo: