Spaces:
Running
Running
File size: 15,339 Bytes
3e5e5b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 |
import streamlit as st
import os
from typing import Literal, List, Dict, TypedDict, Annotated
from langchain_groq import ChatGroq
from pydantic import BaseModel, Field
from langsmith import traceable
from langgraph.graph import StateGraph, START, END
from langchain_core.messages import SystemMessage, HumanMessage
from langgraph.constants import Send
import operator
from langchain_core.prompts import ChatPromptTemplate
from dotenv import load_dotenv
load_dotenv()
# --- Helper Functions ---
def markdown_converter(text):
return st.markdown(text)
# --- Blog Evaluator Workflow ---
class BlogState(TypedDict):
topic: str
blog: str
evaluation: str
feedback: str
accepted: bool
def generate_blog(state: BlogState, llm):
prompt = ChatPromptTemplate.from_messages([
("system", "You are a helpful assistant that generates short blogs."),
("human", "Generate a short blog about: {topic}")
])
chain = prompt | llm
result = chain.invoke({"topic": state["topic"]}).content
return {"blog": result}
def evaluate_blog(state: BlogState, llm):
prompt = ChatPromptTemplate.from_messages([
("system", "You are a strict blog evaluator."),
("human",
"Evaluate this blog:\n{blog}\nIs it concise, engaging, structured with subtitles and a conclusion? Respond with 'yes' or 'no'."),
("human", "If the answer is no. provide specific feedback on the needed improvements")
])
chain = prompt | llm
result = chain.invoke({"blog": state["blog"]}).content
lines = result.split('\n')
evaluation_text = lines[0].strip().lower()
if 'no' in evaluation_text:
return {"evaluation": "Needs Revision", "feedback": "\n".join(lines[1:]), "accepted": False}
else:
return {"evaluation": "Accepted", "feedback": "", "accepted": True}
def provide_feedback(state: BlogState):
return {"feedback": state["feedback"]}
def conditional_check(state):
if not state["accepted"]:
return "revise"
else:
return "end"
def build_blog_graph(llm):
def generate_blog_llm(state):
return generate_blog(state, llm)
def evaluate_blog_llm(state):
return evaluate_blog(state, llm)
graph = StateGraph(BlogState)
graph.add_node("generate_blog", generate_blog_llm)
graph.add_node("evaluate_blog", evaluate_blog_llm)
graph.add_node("provide_feedback", provide_feedback)
graph.set_entry_point("generate_blog")
graph.add_conditional_edges(
"evaluate_blog",
conditional_check,
{
"revise": "generate_blog",
"end": END
}
)
graph.add_edge("generate_blog", "evaluate_blog")
graph.add_edge("provide_feedback", "generate_blog")
return graph
# --- Parallelized Code Review Workflow ---
class CodeReviewState(TypedDict):
code_snippet: str
readability_feedback: str
security_feedback: str
best_practices_feedback: str
feedback_aggregator: str
@traceable
def get_readability_feedback(state: CodeReviewState, llm):
"""First LLM call to check code readability"""
st.session_state.progress_text = "Analyzing Readability..."
msg = llm.invoke([
HumanMessage(content=f"Provide readability feedback for the following code:\n\n {state['code_snippet']}")
])
return {"readability_feedback": msg.content}
@traceable
def get_security_feedback(state: CodeReviewState, llm):
"""Second LLM call to check for security vulnerabilities in code"""
st.session_state.progress_text = "Analyzing Security..."
msg = llm.invoke([
HumanMessage(
content=f"Check for potential security vulnerabilities in the following code and provide feedback:\n\n {state['code_snippet']}")
])
return {"security_feedback": msg.content}
@traceable
def get_best_practices_feedback(state: CodeReviewState, llm):
"""Third LLM call to check for adherence to coding best practices"""
st.session_state.progress_text = "Analyzing Best Practices..."
msg = llm.invoke([
HumanMessage(
content=f"Evaluate the adherence to coding best practices in the following code and provide feedback:\n\n {state['code_snippet']}")
])
return {"best_practices_feedback": msg.content}
@traceable
def aggregate_feedback(state: CodeReviewState):
"""Combine all the feedback from the three LLM calls into a single output"""
st.session_state.progress_text = "Aggregating Feedback..."
combined = f"Here's the overall feedback for the code:\n\n"
combined += f"READABILITY FEEDBACK:\n{state['readability_feedback']}\n\n"
combined += f"SECURITY FEEDBACK:\n{state['security_feedback']}\n\n"
combined += f"BEST PRACTICES FEEDBACK:\n{state['best_practices_feedback']}"
return {"feedback_aggregator": combined}
def build_code_review_graph(llm):
def get_readability_feedback_llm(state):
return get_readability_feedback(state, llm)
def get_security_feedback_llm(state):
return get_security_feedback(state, llm)
def get_best_practices_feedback_llm(state):
return get_best_practices_feedback(state, llm)
parallel_builder = StateGraph(CodeReviewState)
# Add nodes
parallel_builder.add_node("get_readability_feedback", get_readability_feedback_llm)
parallel_builder.add_node("get_security_feedback", get_security_feedback_llm)
parallel_builder.add_node("get_best_practices_feedback", get_best_practices_feedback_llm)
parallel_builder.add_node("aggregate_feedback", aggregate_feedback)
# Add edges
parallel_builder.add_edge(START, "get_readability_feedback")
parallel_builder.add_edge(START, "get_security_feedback")
parallel_builder.add_edge(START, "get_best_practices_feedback")
parallel_builder.add_edge("get_readability_feedback", "aggregate_feedback")
parallel_builder.add_edge("get_security_feedback", "aggregate_feedback")
parallel_builder.add_edge("get_best_practices_feedback", "aggregate_feedback")
parallel_builder.add_edge("aggregate_feedback", END)
return parallel_builder.compile()
# --- Learning Path Generator Workflow ---
class Topic(BaseModel):
name: str = Field(description="Name of the learning topic.")
description: str = Field(description="Brief overview of the topic.")
class Topics(BaseModel):
topics: List[Topic] = Field(description="List of topics to learn.")
class State(TypedDict):
user_skills: str
user_goals: str
topics: List[Topic]
completed_topics: Annotated[List[str], operator.add]
learning_roadmap: str
class WorkerState(TypedDict):
topic: Topic
completed_topics: List[str]
@traceable
def orchestrator(state: State, planner):
study_plan = planner.invoke([
SystemMessage(
content="Create a detailed study plan based on user skills and goals."
),
HumanMessage(
content=f"User skills: {state['user_skills']}\nUser goals: {state['user_goals']}"
),
])
return {"topics": study_plan.topics}
@traceable
def llm_call(state: WorkerState, llm):
topic_summary = llm.invoke([
SystemMessage(
content="Generate a content summary for the provided topic."
),
HumanMessage(
content=f"Topic: {state['topic'].name}\nDescription: {state['topic'].description}"
),
])
return {"completed_topics": [topic_summary.content]}
@traceable
def synthesizer(state: State):
topic_summaries = state["completed_topics"]
learning_roadmap = "\n\n---\n\n".join(topic_summaries)
return {"learning_roadmap": learning_roadmap}
def assign_workers(state: State):
return [Send("llm_call", {"topic": t}) for t in state["topics"]]
def build_learning_path_graph(llm, planner):
def orchestrator_planner(state):
return orchestrator(state, planner)
def llm_call_llm(state):
return llm_call(state, llm)
learning_path_builder = StateGraph(State)
learning_path_builder.add_node("orchestrator", orchestrator_planner)
learning_path_builder.add_node("llm_call", llm_call_llm)
learning_path_builder.add_node("synthesizer", synthesizer)
learning_path_builder.set_entry_point("orchestrator")
learning_path_builder.add_conditional_edges("orchestrator", assign_workers, {"llm_call": "llm_call"})
learning_path_builder.add_edge("llm_call", "synthesizer")
learning_path_builder.add_edge("synthesizer", END)
return learning_path_builder
# --- Streamlit App ---
st.set_page_config(page_title="LLM-Powered Workflows", layout="wide")
# Custom CSS for colors
st.markdown(
"""
<style>
[data-testid="stSidebar"][aria-expanded="true"] > div:first-child {
background-color: #FF7F50; /* Coral */
}
[data-testid="stAppViewContainer"] {
background-color: #FF1493; /* Deep Pink */
}
/* Adjusting main content text color */
.block-container {
color: #9400D3; /* Dark Violet */
}
/* for all text */
body {
color: #9400D3 !important; /* Dark Violet */
}
</style>
""",
unsafe_allow_html=True,
)
st.title("Try out LLM-Powered Workflows")
st.markdown("""
<p style='color:#9400D3; font-size: 20px;'>
<b>1. Learning Path Generator</b> - Orchestrator-Synthesizer Workflow<br>
<b>2. Peer Code Review</b> - Parallelized Workflow<br>
<b>3. Blog Generation</b> - Evaluator-Optimizer Workflow
</p>
<p style='color:#9400D3;'><b>Enter your GROQ API key on the left to get started!</b></p>
""", unsafe_allow_html=True)
# Initialize session state
if "model_choice" not in st.session_state:
st.session_state.model_choice = "mixtral-8x7b-32768"
if "progress_text" not in st.session_state:
st.session_state.progress_text = ""
if "api_key_submitted" not in st.session_state:
st.session_state.api_key_submitted = False
# Sidebar for API key, model selection, and workflow selection
with st.sidebar:
st.header("Configuration")
groq_api_key_input = st.text_input("Enter your Groq API Key:", type="password", key="api_key_input")
api_key_submitted = st.button("Submit API Key")
available_models = ["mixtral-8x7b-32768", "deepseek-r1-distill-qwen-32b", "qwen-2.5-32b", "llama-3.1-8b-instant"]
llm = None
planner = None
if api_key_submitted:
st.session_state.api_key_submitted = True
if st.session_state.api_key_submitted:
if groq_api_key_input:
os.environ["GROQ_API_KEY"] = groq_api_key_input
elif os.environ.get("GROQ_API_KEY"):
groq_api_key_input = os.environ.get("GROQ_API_KEY")
if groq_api_key_input or os.environ.get("GROQ_API_KEY"):
try:
llm = ChatGroq(groq_api_key=groq_api_key_input, model_name=st.session_state.model_choice)
planner = llm.with_structured_output(Topics)
st.success(f"API key loaded successfully!")
st.session_state.model_choice = st.selectbox(
"Choose a Model",
available_models,
key="model_select_box",
index=available_models.index(st.session_state.model_choice) if st.session_state.model_choice in available_models else 0
)
llm = ChatGroq(groq_api_key=groq_api_key_input, model_name=st.session_state.model_choice)
planner = llm.with_structured_output(Topics)
st.success(f"model '{st.session_state.model_choice}' loaded successfully!")
except Exception as e:
st.error(f"Error initializing LLM: {e}")
llm = None
planner = None
else:
st.warning("Please enter your Groq API key to continue.")
if llm is not None:
# Emojis for workflow choices
workflow_emojis = {
"Learning Path Generator": "π Learning Path", # Books
"Parallelized Code Review": "π¨βπ» Code Review", # Man technologist
"Blog Evaluator": "π Blog Evaluator", # Writing hand
}
# Correct order for selectbox:
workflow_order = ["Learning Path Generator", "Parallelized Code Review", "Blog Evaluator"]
workflow_choice = st.selectbox(
"Choose a Workflow",
workflow_order,
format_func=lambda x: f"{workflow_emojis[x]}",
key="workflow_choice"
)
# Main content area
if llm and planner:
# Emojis for workflow choices
workflow_emojis = {
"Learning Path Generator": "π", # Books
"Parallelized Code Review": "π¨βπ»", # Man technologist
"Blog Evaluator": "π", # Writing hand
}
if st.session_state.get("workflow_choice") == "Learning Path Generator":
st.header(f"{workflow_emojis['Learning Path Generator']} Learning Path Generator")
user_skills = st.text_area("Enter your current skills:")
user_goals = st.text_area("Enter your learning goals:")
if st.button("Generate Learning Path"):
if user_skills and user_goals:
learning_graph = build_learning_path_graph(llm, planner)
learning_app = learning_graph.compile()
result = learning_app.invoke({"user_skills": user_skills, "user_goals": user_goals})
st.subheader("Learning Roadmap:")
markdown_converter(result["learning_roadmap"])
else:
st.error("Please enter both your skills and goals")
elif st.session_state.get("workflow_choice") == "Parallelized Code Review":
st.header(f"{workflow_emojis['Parallelized Code Review']} Parallelized Code Review")
code_snippet = st.text_area("Enter code snippet:", height=300)
review_button = st.button("Review Code")
if review_button:
if code_snippet:
workflow = build_code_review_graph(llm)
progress_bar = st.progress(0)
progress_bar.progress(25, text="Starting...")
result = workflow.invoke({"code_snippet": code_snippet})
progress_bar.progress(100, text="Done!")
st.subheader("Code Review Feedback:")
st.markdown(result["feedback_aggregator"])
progress_bar.empty()
st.session_state.progress_text = ""
else:
st.error("Please enter a code snippet to review.")
else:
st.write(st.session_state.progress_text)
elif st.session_state.get("workflow_choice") == "Blog Evaluator":
st.header(f"{workflow_emojis['Blog Evaluator']} Blog Evaluator")
blog_topic = st.text_input("Enter blog topic:")
if st.button("Generate and Evaluate"):
if blog_topic:
blog_graph = build_blog_graph(llm)
blog_app = blog_graph.compile()
result = blog_app.invoke({"topic": blog_topic})
st.subheader("Blog:")
markdown_converter(result["blog"])
#only display blog content. No Evaluation or feedback.
else:
st.error("Please enter a blog topic")
|