File size: 15,339 Bytes
3e5e5b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
import streamlit as st
import os
from typing import Literal, List, Dict, TypedDict, Annotated
from langchain_groq import ChatGroq
from pydantic import BaseModel, Field
from langsmith import traceable
from langgraph.graph import StateGraph, START, END
from langchain_core.messages import SystemMessage, HumanMessage
from langgraph.constants import Send
import operator
from langchain_core.prompts import ChatPromptTemplate
from dotenv import load_dotenv

load_dotenv()

# --- Helper Functions ---

def markdown_converter(text):
    return st.markdown(text)


# --- Blog Evaluator Workflow ---

class BlogState(TypedDict):
    topic: str
    blog: str
    evaluation: str
    feedback: str
    accepted: bool


def generate_blog(state: BlogState, llm):
    prompt = ChatPromptTemplate.from_messages([
        ("system", "You are a helpful assistant that generates short blogs."),
        ("human", "Generate a short blog about: {topic}")
    ])
    chain = prompt | llm
    result = chain.invoke({"topic": state["topic"]}).content
    return {"blog": result}


def evaluate_blog(state: BlogState, llm):
    prompt = ChatPromptTemplate.from_messages([
        ("system", "You are a strict blog evaluator."),
        ("human",
         "Evaluate this blog:\n{blog}\nIs it concise, engaging, structured with subtitles and a conclusion? Respond with 'yes' or 'no'."),
        ("human", "If the answer is no. provide specific feedback on the needed improvements")
    ])
    chain = prompt | llm
    result = chain.invoke({"blog": state["blog"]}).content

    lines = result.split('\n')
    evaluation_text = lines[0].strip().lower()
    if 'no' in evaluation_text:
        return {"evaluation": "Needs Revision", "feedback": "\n".join(lines[1:]), "accepted": False}
    else:
        return {"evaluation": "Accepted", "feedback": "", "accepted": True}


def provide_feedback(state: BlogState):
    return {"feedback": state["feedback"]}


def conditional_check(state):
    if not state["accepted"]:
        return "revise"
    else:
        return "end"


def build_blog_graph(llm):
    def generate_blog_llm(state):
        return generate_blog(state, llm)

    def evaluate_blog_llm(state):
        return evaluate_blog(state, llm)

    graph = StateGraph(BlogState)
    graph.add_node("generate_blog", generate_blog_llm)
    graph.add_node("evaluate_blog", evaluate_blog_llm)
    graph.add_node("provide_feedback", provide_feedback)
    graph.set_entry_point("generate_blog")
    graph.add_conditional_edges(
        "evaluate_blog",
        conditional_check,
        {
            "revise": "generate_blog",
            "end": END
        }
    )
    graph.add_edge("generate_blog", "evaluate_blog")
    graph.add_edge("provide_feedback", "generate_blog")

    return graph


# --- Parallelized Code Review Workflow ---

class CodeReviewState(TypedDict):
    code_snippet: str
    readability_feedback: str
    security_feedback: str
    best_practices_feedback: str
    feedback_aggregator: str


@traceable
def get_readability_feedback(state: CodeReviewState, llm):
    """First LLM call to check code readability"""
    st.session_state.progress_text = "Analyzing Readability..."
    msg = llm.invoke([
        HumanMessage(content=f"Provide readability feedback for the following code:\n\n {state['code_snippet']}")
    ])
    return {"readability_feedback": msg.content}


@traceable
def get_security_feedback(state: CodeReviewState, llm):
    """Second LLM call to check for security vulnerabilities in code"""
    st.session_state.progress_text = "Analyzing Security..."
    msg = llm.invoke([
        HumanMessage(
            content=f"Check for potential security vulnerabilities in the following code and provide feedback:\n\n {state['code_snippet']}")
    ])
    return {"security_feedback": msg.content}


@traceable
def get_best_practices_feedback(state: CodeReviewState, llm):
    """Third LLM call to check for adherence to coding best practices"""
    st.session_state.progress_text = "Analyzing Best Practices..."
    msg = llm.invoke([
        HumanMessage(
            content=f"Evaluate the adherence to coding best practices in the following code and provide feedback:\n\n {state['code_snippet']}")
    ])
    return {"best_practices_feedback": msg.content}


@traceable
def aggregate_feedback(state: CodeReviewState):
    """Combine all the feedback from the three LLM calls into a single output"""
    st.session_state.progress_text = "Aggregating Feedback..."
    combined = f"Here's the overall feedback for the code:\n\n"
    combined += f"READABILITY FEEDBACK:\n{state['readability_feedback']}\n\n"
    combined += f"SECURITY FEEDBACK:\n{state['security_feedback']}\n\n"
    combined += f"BEST PRACTICES FEEDBACK:\n{state['best_practices_feedback']}"
    return {"feedback_aggregator": combined}


def build_code_review_graph(llm):
    def get_readability_feedback_llm(state):
        return get_readability_feedback(state, llm)

    def get_security_feedback_llm(state):
        return get_security_feedback(state, llm)

    def get_best_practices_feedback_llm(state):
        return get_best_practices_feedback(state, llm)

    parallel_builder = StateGraph(CodeReviewState)

    # Add nodes
    parallel_builder.add_node("get_readability_feedback", get_readability_feedback_llm)
    parallel_builder.add_node("get_security_feedback", get_security_feedback_llm)
    parallel_builder.add_node("get_best_practices_feedback", get_best_practices_feedback_llm)
    parallel_builder.add_node("aggregate_feedback", aggregate_feedback)

    # Add edges
    parallel_builder.add_edge(START, "get_readability_feedback")
    parallel_builder.add_edge(START, "get_security_feedback")
    parallel_builder.add_edge(START, "get_best_practices_feedback")
    parallel_builder.add_edge("get_readability_feedback", "aggregate_feedback")
    parallel_builder.add_edge("get_security_feedback", "aggregate_feedback")
    parallel_builder.add_edge("get_best_practices_feedback", "aggregate_feedback")
    parallel_builder.add_edge("aggregate_feedback", END)

    return parallel_builder.compile()


# --- Learning Path Generator Workflow ---

class Topic(BaseModel):
    name: str = Field(description="Name of the learning topic.")
    description: str = Field(description="Brief overview of the topic.")


class Topics(BaseModel):
    topics: List[Topic] = Field(description="List of topics to learn.")


class State(TypedDict):
    user_skills: str
    user_goals: str
    topics: List[Topic]
    completed_topics: Annotated[List[str], operator.add]
    learning_roadmap: str


class WorkerState(TypedDict):
    topic: Topic
    completed_topics: List[str]


@traceable
def orchestrator(state: State, planner):
    study_plan = planner.invoke([
        SystemMessage(
            content="Create a detailed study plan based on user skills and goals."
        ),
        HumanMessage(
            content=f"User skills: {state['user_skills']}\nUser goals: {state['user_goals']}"
        ),
    ])
    return {"topics": study_plan.topics}


@traceable
def llm_call(state: WorkerState, llm):
    topic_summary = llm.invoke([
        SystemMessage(
            content="Generate a content summary for the provided topic."
        ),
        HumanMessage(
            content=f"Topic: {state['topic'].name}\nDescription: {state['topic'].description}"
        ),
    ])

    return {"completed_topics": [topic_summary.content]}


@traceable
def synthesizer(state: State):
    topic_summaries = state["completed_topics"]
    learning_roadmap = "\n\n---\n\n".join(topic_summaries)
    return {"learning_roadmap": learning_roadmap}


def assign_workers(state: State):
    return [Send("llm_call", {"topic": t}) for t in state["topics"]]


def build_learning_path_graph(llm, planner):
    def orchestrator_planner(state):
        return orchestrator(state, planner)

    def llm_call_llm(state):
        return llm_call(state, llm)

    learning_path_builder = StateGraph(State)

    learning_path_builder.add_node("orchestrator", orchestrator_planner)
    learning_path_builder.add_node("llm_call", llm_call_llm)
    learning_path_builder.add_node("synthesizer", synthesizer)

    learning_path_builder.set_entry_point("orchestrator")
    learning_path_builder.add_conditional_edges("orchestrator", assign_workers, {"llm_call": "llm_call"})
    learning_path_builder.add_edge("llm_call", "synthesizer")
    learning_path_builder.add_edge("synthesizer", END)

    return learning_path_builder


# --- Streamlit App ---

st.set_page_config(page_title="LLM-Powered Workflows", layout="wide")

# Custom CSS for colors
st.markdown(
    """
    <style>
        [data-testid="stSidebar"][aria-expanded="true"] > div:first-child {
            background-color: #FF7F50; /* Coral */
        }
        [data-testid="stAppViewContainer"] {
          background-color: #FF1493; /* Deep Pink */
        }
        
        /* Adjusting main content text color */
        .block-container {
          color: #9400D3; /* Dark Violet */
        }
         /* for all text */
        body {
          color: #9400D3 !important; /* Dark Violet */
        }

    </style>
    """,
    unsafe_allow_html=True,
)


st.title("Try out LLM-Powered Workflows")
st.markdown("""
    <p style='color:#9400D3; font-size: 20px;'>
        <b>1. Learning Path Generator</b> - Orchestrator-Synthesizer Workflow<br>
        <b>2. Peer Code Review</b> - Parallelized Workflow<br>
        <b>3. Blog Generation</b> - Evaluator-Optimizer Workflow
    </p>
    <p style='color:#9400D3;'><b>Enter your GROQ API key on the left to get started!</b></p>
    """, unsafe_allow_html=True)

# Initialize session state
if "model_choice" not in st.session_state:
    st.session_state.model_choice = "mixtral-8x7b-32768"
if "progress_text" not in st.session_state:
    st.session_state.progress_text = ""
if "api_key_submitted" not in st.session_state:
    st.session_state.api_key_submitted = False
# Sidebar for API key, model selection, and workflow selection
with st.sidebar:
    st.header("Configuration")
    groq_api_key_input = st.text_input("Enter your Groq API Key:", type="password", key="api_key_input")
    api_key_submitted = st.button("Submit API Key")
    
    available_models = ["mixtral-8x7b-32768", "deepseek-r1-distill-qwen-32b", "qwen-2.5-32b", "llama-3.1-8b-instant"]
    
    llm = None
    planner = None

    if api_key_submitted:
        st.session_state.api_key_submitted = True

    if st.session_state.api_key_submitted:
        if groq_api_key_input:
            os.environ["GROQ_API_KEY"] = groq_api_key_input
        elif os.environ.get("GROQ_API_KEY"):
            groq_api_key_input = os.environ.get("GROQ_API_KEY")

        if groq_api_key_input or os.environ.get("GROQ_API_KEY"):
            try:
                llm = ChatGroq(groq_api_key=groq_api_key_input, model_name=st.session_state.model_choice)
                planner = llm.with_structured_output(Topics)
                st.success(f"API key loaded successfully!")
            
                st.session_state.model_choice = st.selectbox(
                "Choose a Model",
                available_models,
                key="model_select_box",
                index=available_models.index(st.session_state.model_choice) if st.session_state.model_choice in available_models else 0
                )

                llm = ChatGroq(groq_api_key=groq_api_key_input, model_name=st.session_state.model_choice)
                planner = llm.with_structured_output(Topics)

                st.success(f"model '{st.session_state.model_choice}' loaded successfully!")

            except Exception as e:
                 st.error(f"Error initializing LLM: {e}")
                 llm = None
                 planner = None
        else:
            st.warning("Please enter your Groq API key to continue.")
        
    if llm is not None:
        # Emojis for workflow choices
        workflow_emojis = {
            "Learning Path Generator": "πŸ“š Learning Path",  # Books
            "Parallelized Code Review": "πŸ‘¨β€πŸ’» Code Review",  # Man technologist
            "Blog Evaluator": "πŸ“ Blog Evaluator",  # Writing hand
        }

        # Correct order for selectbox:
        workflow_order = ["Learning Path Generator", "Parallelized Code Review", "Blog Evaluator"]

        workflow_choice = st.selectbox(
            "Choose a Workflow",
            workflow_order,
            format_func=lambda x: f"{workflow_emojis[x]}",
            key="workflow_choice"
        )

# Main content area
if llm and planner:
    # Emojis for workflow choices
    workflow_emojis = {
            "Learning Path Generator": "πŸ“š",  # Books
            "Parallelized Code Review": "πŸ‘¨β€πŸ’»",  # Man technologist
            "Blog Evaluator": "πŸ“",  # Writing hand
        }
    
    if st.session_state.get("workflow_choice") == "Learning Path Generator":
        st.header(f"{workflow_emojis['Learning Path Generator']} Learning Path Generator")
        user_skills = st.text_area("Enter your current skills:")
        user_goals = st.text_area("Enter your learning goals:")
        if st.button("Generate Learning Path"):
            if user_skills and user_goals:
                learning_graph = build_learning_path_graph(llm, planner)
                learning_app = learning_graph.compile()
                result = learning_app.invoke({"user_skills": user_skills, "user_goals": user_goals})
                st.subheader("Learning Roadmap:")
                markdown_converter(result["learning_roadmap"])
            else:
                st.error("Please enter both your skills and goals")
                
    elif st.session_state.get("workflow_choice") == "Parallelized Code Review":
        st.header(f"{workflow_emojis['Parallelized Code Review']} Parallelized Code Review")
        code_snippet = st.text_area("Enter code snippet:", height=300)
        review_button = st.button("Review Code")

        if review_button:
            if code_snippet:
                workflow = build_code_review_graph(llm)
                progress_bar = st.progress(0)
                progress_bar.progress(25, text="Starting...")
                result = workflow.invoke({"code_snippet": code_snippet})
                progress_bar.progress(100, text="Done!")
                st.subheader("Code Review Feedback:")
                st.markdown(result["feedback_aggregator"])
                progress_bar.empty()
                st.session_state.progress_text = ""
            else:
                st.error("Please enter a code snippet to review.")
        else:
            st.write(st.session_state.progress_text)
            
    elif st.session_state.get("workflow_choice") == "Blog Evaluator":
        st.header(f"{workflow_emojis['Blog Evaluator']} Blog Evaluator")
        blog_topic = st.text_input("Enter blog topic:")
        if st.button("Generate and Evaluate"):
            if blog_topic:
                blog_graph = build_blog_graph(llm)
                blog_app = blog_graph.compile()
                result = blog_app.invoke({"topic": blog_topic})
                st.subheader("Blog:")
                markdown_converter(result["blog"])
                #only display blog content. No Evaluation or feedback.
            else:
                st.error("Please enter a blog topic")