import streamlit as st import json from src.langgraphagenticai.ui.streamlitui.loadui import LoadStreamlitUI from src.langgraphagenticai.LLMS.groqllm import GroqLLM from src.langgraphagenticai.graph.graph_builder import GraphBuilder from src.langgraphagenticai.ui.streamlitui.display_result import DisplayResultStreamlit # MAIN Function START def load_langgraph_agenticai_app(): """ Loads and runs the LangGraph AgenticAI application with Streamlit UI. This function initializes the UI, handles user input, configures the LLM model, sets up the graph based on the selected use case, and displays the output while implementing exception handling for robustness. """ # Load UI ui = LoadStreamlitUI() user_input = ui.load_streamlit_ui() if not user_input: st.error("Error: Failed to load user input from the UI.") return # Text input for user message if st.session_state.IsFetchButtonClicked: user_message = st.session_state.timeframe else : user_message = st.chat_input("Enter your message:") if user_message: try: # Configure LLM obj_llm_config = GroqLLM(user_controls_input=user_input) model = obj_llm_config.get_llm_model() if not model: st.error("Error: LLM model could not be initialized.") return # Initialize and set up the graph based on use case usecase = user_input.get('selected_usecase') if not usecase: st.error("Error: No use case selected.") return ### Graph Builder graph_builder=GraphBuilder(model) try: graph = graph_builder.setup_graph(usecase) DisplayResultStreamlit(usecase,graph,user_message).display_result_on_ui() except Exception as e: st.error(f"Error: Graph setup failed - {e}") return except Exception as e: raise ValueError(f"Error Occurred with Exception : {e}")