Defkhan5960 commited on
Commit
95b119d
·
1 Parent(s): 3cafaee

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +52 -0
app.py ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import tensorflow as tf
3
+ import numpy as np
4
+ from tensorflow.keras.preprocessing import image
5
+ from tensorflow.keras.applications.efficientnet import preprocess_input
6
+ #from tensorflow.keras.applications.resnet50 import preprocess_input
7
+ import plotly.express as px
8
+
9
+ # model yükle
10
+ model = tf.keras.models.load_model("efficent_net224B0.h5")
11
+
12
+ # Etiketler
13
+ waste_labels = {0: 'Fibres', 1: 'Nanowires', 2: 'Particles', 3: 'Powder'}
14
+
15
+ # uygulama yükle
16
+ st.title("SEM Görüntü Sınıflandırma Uygulaması")
17
+ st.write("Lütfen bir SEM görüntüsü yükleyin. - (Fibres, Nanowires, Powder,Particles)")
18
+
19
+ # giriş yap
20
+ uploaded_image = st.file_uploader("SEM Görüntüsünü Yükleyin", type=["jpg", "png", "jpeg"])
21
+
22
+ # resim işleme
23
+
24
+ if uploaded_image is not None:
25
+ # Görüntüyü modelin girdi boyutuna yeniden boyutlandırın
26
+ img = image.load_img(uploaded_image, target_size=(224, 224))
27
+ img = image.img_to_array(img)
28
+ img = np.expand_dims(img, axis=0)
29
+ img = preprocess_input(img)
30
+
31
+
32
+ # tahmin
33
+ prediction = model.predict(img)
34
+ predicted_class = np.argmax(prediction)
35
+
36
+ # Sonuç
37
+ st.image(uploaded_image, caption='Yüklenen Görüntü', use_column_width=True)
38
+ st.write(f"Tahmin Edilen Sınıf: {waste_labels[predicted_class]}")
39
+
40
+ # görselleştirme
41
+ st.write("Tahmin İhtimalleri:")
42
+ labels = list(waste_labels.values())
43
+ probabilities = prediction[0] * 100 # İhtimalleri yüzde olarak hesapla
44
+
45
+ # Çubuk grafik
46
+ fig_bar = px.bar(x=labels, y=probabilities, labels={'x': 'Sınıf', 'y': 'Yüzde (%)'},
47
+ title="Tahmin İhtimalleri (Çubuk Grafik)")
48
+ st.plotly_chart(fig_bar)
49
+
50
+ # Pasta grafiği
51
+ fig_pie = px.pie(values=probabilities, names=labels, title="Tahmin İhtimalleri (Pasta Grafiği)")
52
+ st.plotly_chart(fig_pie)