Update app.py
Browse files
app.py
CHANGED
@@ -1,68 +1,83 @@
|
|
1 |
import streamlit as st
|
2 |
-
from
|
3 |
-
from langchain.
|
4 |
-
from
|
5 |
-
from
|
6 |
-
from langchain.
|
7 |
-
from
|
8 |
-
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
-
|
12 |
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
add_generation_prompt=True,
|
17 |
-
return_tensors='pt'
|
18 |
-
)
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
# "content": "You are a friendly chatbot who can code",
|
34 |
-
# },
|
35 |
-
# {"role": "user", "content": prompt},
|
36 |
-
# ]
|
37 |
-
# prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
38 |
-
# outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
|
39 |
-
# print(outputs[0]["generated_text"].split("<|assistant|>")[1])
|
40 |
-
# return outputs[0]["generated_text"].split("<|assistant|>")[1]
|
41 |
|
42 |
def main():
|
43 |
-
st.title("
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
st.session_state.messages = []
|
54 |
-
|
55 |
-
prompt = st.text_input("Enter your question here:")
|
56 |
-
|
57 |
for message in st.session_state.messages:
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
if __name__ == "__main__":
|
68 |
main()
|
|
|
1 |
import streamlit as st
|
2 |
+
from langchain_community.document_loaders.pdf import PyPDFDirectoryLoader
|
3 |
+
from langchain.text_splitter import CharacterTextSplitter
|
4 |
+
from langchain_community.embeddings import HuggingFaceInstructEmbeddings
|
5 |
+
from langchain_community.vectorstores import FAISS
|
6 |
+
from langchain.chains import RetrievalQA
|
7 |
+
from langchain.memory import ConversationBufferMemory
|
8 |
+
from langchain_community.llms import HuggingFaceHub
|
9 |
|
10 |
+
def make_vectorstore(embeddings):
|
11 |
+
loader = PyPDFDirectoryLoader("data")
|
12 |
+
documents = loader.load()
|
13 |
+
text_splitter = CharacterTextSplitter(chunk_size=200, chunk_overlap=0)
|
14 |
+
texts = text_splitter.split_documents(documents)
|
15 |
+
docsearch = FAISS.from_documents(texts, embeddings)
|
16 |
|
17 |
+
return docsearch
|
18 |
|
19 |
+
def get_conversation(vectorstore, model):
|
20 |
+
|
21 |
+
memory = ConversationBufferMemory(memory_key="messages", return_messages=True)
|
|
|
|
|
|
|
22 |
|
23 |
+
conversation_chain = RetrievalQA.from_llm(
|
24 |
+
llm=model,
|
25 |
+
retriever=vectorstore.as_retriever(),
|
26 |
+
memory=memory)
|
27 |
+
|
28 |
+
return conversation_chain
|
29 |
|
30 |
+
def get_response(conversation_chain, query):
|
31 |
+
# get the response
|
32 |
+
response = conversation_chain.invoke(query)
|
33 |
+
response = response["result"]
|
34 |
+
answer = response.split('\nHelpful Answer: ')[1]
|
35 |
+
return answer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
def main():
|
38 |
+
st.title("Chat LLM")
|
39 |
+
|
40 |
+
print("Downloading Embeddings Model")
|
41 |
+
with st.spinner('Downloading Embeddings Model...'):
|
42 |
+
embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-base", model_kwargs = {'device': 'cpu'})
|
43 |
+
|
44 |
+
print("Loading LLM from HuggingFace")
|
45 |
+
with st.spinner('Loading LLM from HuggingFace...'):
|
46 |
+
llm = HuggingFaceHub(repo_id="HuggingFaceH4/zephyr-7b-beta", model_kwargs={"temperature":0.7, "max_new_tokens":512, "top_p":0.95, "top_k":50},)
|
47 |
+
|
48 |
+
# multiple pdfs uploader in the side bar
|
49 |
+
st.sidebar.title("Upload PDFs")
|
50 |
+
uploaded_files = st.sidebar.file_uploader("Upload PDFs", accept_multiple_files=True)
|
51 |
+
if uploaded_files:
|
52 |
+
for file in uploaded_files:
|
53 |
+
with open(f"data/{file.name}", "wb") as f:
|
54 |
+
f.write(file.getbuffer())
|
55 |
+
st.sidebar.success("PDFs uploaded successfully")
|
56 |
+
else:
|
57 |
+
st.sidebar.warning("Please upload PDFs")
|
58 |
+
# add a clear chat button which will clear the session state and the conversation history
|
59 |
+
|
60 |
+
if "messages" not in st.session_state:
|
61 |
st.session_state.messages = []
|
62 |
+
|
|
|
|
|
63 |
for message in st.session_state.messages:
|
64 |
+
if message["role"] == "user":
|
65 |
+
st.chat_message("user").markdown(message["content"])
|
66 |
+
else:
|
67 |
+
st.chat_message("bot").markdown(message["content"])
|
68 |
+
|
69 |
+
with st.spinner('making a vectorstore database...'):
|
70 |
+
vectorstore = make_vectorstore(embeddings)
|
71 |
+
with st.spinner('making a conversation chain...'):
|
72 |
+
conversation_chain = get_conversation(vectorstore, llm)
|
73 |
+
|
74 |
+
user_prompt = st.chat_input("ask a question", key="user")
|
75 |
+
if user_prompt:
|
76 |
+
st.chat_message("user").markdown(user_prompt)
|
77 |
+
st.session_state.messages.append({"role": "user", "content": user_prompt})
|
78 |
+
response = get_response(conversation_chain, user_prompt)
|
79 |
+
st.chat_message("bot").markdown(response)
|
80 |
+
st.session_state.messages.append({"role": "bot", "content": response})
|
81 |
|
82 |
if __name__ == "__main__":
|
83 |
main()
|