Pratik Dwivedi
commited on
Commit
·
a2c0a8e
1
Parent(s):
d44db4f
added app.py
Browse files- app.py +65 -0
- requirements.txt +5 -0
app.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from langchain.document_loaders import PyPDFLoader
|
3 |
+
from langchain.indexes import VectorstoreIndexCreator
|
4 |
+
from langchain.chains import RetrievalQA, RetrievalQAWithSourcesChain
|
5 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
6 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
7 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
8 |
+
|
9 |
+
|
10 |
+
|
11 |
+
def respond_to_question(question, model, tokenizer):
|
12 |
+
|
13 |
+
prompt = [{'role': 'user', 'content': question}]
|
14 |
+
inputs = tokenizer.apply_chat_template(
|
15 |
+
prompt,
|
16 |
+
add_generation_prompt=True,
|
17 |
+
return_tensors='pt'
|
18 |
+
)
|
19 |
+
|
20 |
+
tokens = model.generate(
|
21 |
+
inputs.to(model.device),
|
22 |
+
max_new_tokens=1024,
|
23 |
+
temperature=0.8,
|
24 |
+
do_sample=True
|
25 |
+
)
|
26 |
+
|
27 |
+
print(tokenizer.decode(tokens[0], skip_special_tokens=False))
|
28 |
+
return tokenizer.decode(tokens[0], skip_special_tokens=False)
|
29 |
+
# prompt = "write me a python function that prints the fibonacci sequence"
|
30 |
+
# messages = [
|
31 |
+
# {
|
32 |
+
# "role": "system",
|
33 |
+
# "content": "You are a friendly chatbot who can code",
|
34 |
+
# },
|
35 |
+
# {"role": "user", "content": prompt},
|
36 |
+
# ]
|
37 |
+
# prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
38 |
+
# outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
|
39 |
+
# print(outputs[0]["generated_text"].split("<|assistant|>")[1])
|
40 |
+
# return outputs[0]["generated_text"].split("<|assistant|>")[1]
|
41 |
+
|
42 |
+
def main():
|
43 |
+
st.title("LangChain Demo")
|
44 |
+
|
45 |
+
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-zephyr-3b')
|
46 |
+
model = AutoModelForCausalLM.from_pretrained(
|
47 |
+
'stabilityai/stablelm-zephyr-3b',
|
48 |
+
trust_remote_code=True,
|
49 |
+
device_map="auto"
|
50 |
+
)
|
51 |
+
|
52 |
+
if 'messages' not in st.session_state:
|
53 |
+
st.session_state.messages = []
|
54 |
+
|
55 |
+
prompt = st.text_input("Enter your question here:")
|
56 |
+
|
57 |
+
for message in st.session_state.messages:
|
58 |
+
st.chat_message(message['role']).markdown(message['text'])
|
59 |
+
|
60 |
+
if prompt:
|
61 |
+
st.session_state.messages.append({'role': 'user', 'text': prompt})
|
62 |
+
st.chat_message("user").markdown(prompt)
|
63 |
+
model_response = respond_to_question(prompt, model, tokenizer)
|
64 |
+
st.session_state.messages.append({'role': 'Assistant', 'text': model_response})
|
65 |
+
st.chat_message("system").markdown(model_response)
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
langchain
|
3 |
+
transformers
|
4 |
+
git+https://github.com/huggingface/transformers.git
|
5 |
+
accelerate
|