Spaces:
Sleeping
Sleeping
File size: 3,049 Bytes
a2cccdb e7f4e46 00062c3 e7f4e46 a2cccdb d9c6906 a2cccdb d9c6906 a2cccdb d9c6906 a2cccdb 9bf72c1 d9c6906 00062c3 9694dd7 00062c3 d9c6906 00062c3 9bf72c1 00062c3 9bf230a 00062c3 9bf230a 00062c3 9bf230a 00062c3 9bf72c1 00062c3 a2cccdb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
import streamlit as st
from llmware.prompts import Prompt
import requests
import io, os, re
import PyPDF2
def register_gguf_model():
prompter = Prompt()
your_model_name = "llama"
hf_repo_name = "TheBloke/Llama-2-7B-Chat-GGUF"
model_file = "llama-2-7b-chat.Q5_K_S.gguf"
print("registering models")
prompter.model_catalog.register_gguf_model(your_model_name,hf_repo_name, model_file, prompt_wrapper="open_chat")
your_model_name = "open_gpt4"
hf_repo_name = "TheBloke/Open_Gpt4_8x7B-GGUF"
model_file = "open_gpt4_8x7b.Q4_K_M.gguf"
prompter.model_catalog.register_gguf_model(your_model_name,hf_repo_name, model_file, prompt_wrapper="open_chat")
your_model_name = "phi2"
hf_repo_name = "TheBloke/phi-2-GGUF"
model_file = "phi-2.Q4_K_M.gguf"
prompter.model_catalog.register_gguf_model(your_model_name,hf_repo_name, model_file, prompt_wrapper="open_chat")
your_model_name = "mistral"
hf_repo_name = "TheBloke/Mistral-7B-Instruct-v0.2-GGUF"
model_file = "mistral-7b-instruct-v0.2.Q4_K_M.gguf"
prompter.model_catalog.register_gguf_model(your_model_name,hf_repo_name, model_file, prompt_wrapper="open_chat")
return prompter
def main():
st.title("BetterZila RAG Enabled LLM")
with st.spinner("Registering Models for use..."):
prompter = register_gguf_model()
data_path = "data/"
# keep the select box to llama as default but give a button right below it that says select model after which the model will be loaded
st.sidebar.subheader("Select Model")
model_name = st.sidebar.selectbox("Select Model", ["llama", "open_gpt4", "phi2", "mistral"])
with st.spinner("Loading Model..."):
prompter.load_model(model_name)
st.success("Model Loaded!")
queries = ['Can you give me an example from history where the enemy was crushed totally from the book?', "What's the point of making myself less accessible?", "Can you tell me the story of Queen Elizabeth I from this 48 laws of power book?"]
for query in queries:
st.subheader(f"Query: {query}")
with st.spinner("Generating response..."):
for file in os.listdir(data_path):
if file.endswith(".pdf"):
print("Found PDF file: ", file)
print("loading Source...")
source = prompter.add_source_document(data_path, file, query=None)
print("generating response...")
responses = prompter.prompt_with_source(query, prompt_name="just_the_facts", temperature=0.3)
print("response generated!")
for r, response in enumerate(responses):
print(query, ":", re.sub("[\n]"," ", response["llm_response"]).strip())
prompter.clear_source_materials()
st.write(query)
st.write(re.sub("[\n]"," ", response["llm_response"]).strip())
st.success("Response generated!")
if __name__ == "__main__":
main()
|