Spaces:
Sleeping
Sleeping
Pratik Dwivedi
commited on
Commit
·
25b98b6
1
Parent(s):
837a786
New App
Browse files- app.py +24 -0
- extractor.ipynb +464 -0
- invoice_convertor.py +84 -0
- invoices/invoice1.pdf +0 -0
- invoices/invoice2.pdf +0 -0
- invoices/invoice3.pdf +0 -0
- invoices/invoice4.pdf +0 -0
- invoices/invoice5.pdf +0 -0
- invoices/invoice7.pdf +0 -0
- invoices/invoice8.pdf +0 -0
- requirements.txt +4 -0
app.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import os
|
3 |
+
from invoice_convertor import InvoiceConvertor
|
4 |
+
def main():
|
5 |
+
st.set_page_config(layout="wide")
|
6 |
+
st.title('Amazon Invoice Convertor')
|
7 |
+
st.write('This app converts your Amazon invoice pdfs to a csv file.')
|
8 |
+
convertor = InvoiceConvertor()
|
9 |
+
files = st.file_uploader('Upload your invoice pdfs', type=['pdf'], accept_multiple_files=True)
|
10 |
+
if files:
|
11 |
+
for file in files:
|
12 |
+
with open('data/' + file.name, 'wb') as f:
|
13 |
+
f.write(file.getbuffer())
|
14 |
+
convertor.read_pdfs('data/')
|
15 |
+
result_df = convertor.convert()
|
16 |
+
st.write(result_df)
|
17 |
+
st.download_button('Download csv', data=result_df.to_csv(), file_name='invoice.csv', mime='text/csv')
|
18 |
+
for file in os.listdir('data/'):
|
19 |
+
os.remove('data/' + file)
|
20 |
+
if st.button('Clear csv file') and os.path.exists('invoice.csv'):
|
21 |
+
os.remove('invoice.csv')
|
22 |
+
|
23 |
+
if __name__ == '__main__':
|
24 |
+
main()
|
extractor.ipynb
ADDED
@@ -0,0 +1,464 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"import PyPDF2, os\n",
|
10 |
+
"import pandas as pd"
|
11 |
+
]
|
12 |
+
},
|
13 |
+
{
|
14 |
+
"cell_type": "code",
|
15 |
+
"execution_count": null,
|
16 |
+
"metadata": {},
|
17 |
+
"outputs": [],
|
18 |
+
"source": [
|
19 |
+
"def read_pdf(path):\n",
|
20 |
+
" pdf_file = open(path, 'rb')\n",
|
21 |
+
" pdf_reader = PyPDF2.PdfReader(pdf_file)\n",
|
22 |
+
" text = ''\n",
|
23 |
+
" for page_num in range(len(pdf_reader.pages)):\n",
|
24 |
+
" page = pdf_reader.pages[page_num]\n",
|
25 |
+
" text += page.extract_text()\n",
|
26 |
+
" pdf_file.close()\n",
|
27 |
+
" return text\n",
|
28 |
+
"\n",
|
29 |
+
"invoices = []\n",
|
30 |
+
"path = 'invoices/'\n",
|
31 |
+
"\n",
|
32 |
+
"for file in os.listdir(path):\n",
|
33 |
+
" if file.startswith('invoice'):\n",
|
34 |
+
" text = read_pdf(path + file)\n",
|
35 |
+
" print(text)\n",
|
36 |
+
" invoices.append(text)"
|
37 |
+
]
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"cell_type": "code",
|
41 |
+
"execution_count": null,
|
42 |
+
"metadata": {},
|
43 |
+
"outputs": [],
|
44 |
+
"source": [
|
45 |
+
"import os\n",
|
46 |
+
"def save_as_csv(details, save_as = \"invoice.csv\"):\n",
|
47 |
+
" # if the csv already exists then concat a new one to it, else create a new one\n",
|
48 |
+
" if os.path.exists(save_as):\n",
|
49 |
+
" df = pd.read_csv(save_as)\n",
|
50 |
+
" df = pd.concat([df, pd.DataFrame(details, index=[0])], ignore_index=True)\n",
|
51 |
+
" else: \n",
|
52 |
+
" df = pd.DataFrame(details, index=[0])\n",
|
53 |
+
" df.to_csv(save_as, index=False)"
|
54 |
+
]
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"cell_type": "code",
|
58 |
+
"execution_count": null,
|
59 |
+
"metadata": {},
|
60 |
+
"outputs": [],
|
61 |
+
"source": [
|
62 |
+
"import re\n",
|
63 |
+
"\n",
|
64 |
+
"def extract_invoice_details(text):\n",
|
65 |
+
" invoice_details = {}\n",
|
66 |
+
" try:\n",
|
67 |
+
" invoice_details['Order Number'] = re.search(r'Order Number: (\\S+)', text).group(1)\n",
|
68 |
+
" invoice_details['Invoice Number'] = re.search(r'Invoice Number : (\\S+)', text).group(1)\n",
|
69 |
+
" invoice_details['Order Date'] = re.search(r'Order Date: (\\d{2}\\.\\d{2}\\.\\d{4})', text).group(1)\n",
|
70 |
+
" invoice_details['Invoice Details'] = re.search(r'Invoice Details : (\\S+)', text).group(1)\n",
|
71 |
+
" invoice_details['Invoice Date'] = re.search(r'Invoice Date : (\\d{2}\\.\\d{2}\\.\\d{4})', text).group(1)\n",
|
72 |
+
" invoice_details['Billing Address'] = re.search(r'Billing Address :([\\s\\S]+?)Shipping Address :', text).group(1).strip()\n",
|
73 |
+
" invoice_details['Shipping Address'] = re.search(r'Shipping Address :([\\s\\S]+?)Place of supply:', text).group(1).strip()\n",
|
74 |
+
" invoice_details['PAN'] = re.search(r'PAN No:(\\S+)', text).group(1)\n",
|
75 |
+
" except:\n",
|
76 |
+
" print('Order Number not found')\n",
|
77 |
+
" \n",
|
78 |
+
" item_match = re.search(r'1([\\s\\S]+?)TOTAL:', text, re.DOTALL)\n",
|
79 |
+
" if item_match:\n",
|
80 |
+
" item_info = item_match.group(1)\n",
|
81 |
+
" item_name = re.search(r'\\nAmount\\n1([\\s\\S]+?)₹', item_info).group(1).strip()\n",
|
82 |
+
" invoice_details['Item'] = item_name\n",
|
83 |
+
" print(item_name)\n",
|
84 |
+
" else:\n",
|
85 |
+
" print(\"No item found in the invoice.\")\n",
|
86 |
+
" total_mount_match = re.search(r'TOTAL:([\\s\\S]+?)only', text, re.DOTALL)\n",
|
87 |
+
" if total_mount_match:\n",
|
88 |
+
" total_mount = total_mount_match.group(1).split('₹')[2].split('\\n')[0]\n",
|
89 |
+
" invoice_details['Total Amount'] = total_mount\n",
|
90 |
+
" else:\n",
|
91 |
+
" print(\"No total amount found in the invoice.\")\n",
|
92 |
+
" gstin_match = re.search(r'GST Registration No: ([\\s\\S]+?) ', text)\n",
|
93 |
+
" if gstin_match:\n",
|
94 |
+
" invoice_details['GSTIN'] = gstin_match.group(1).strip()\n",
|
95 |
+
" else:\n",
|
96 |
+
" print(\"No GSTIN found in the invoice.\")\n",
|
97 |
+
" by_match = re.search(r'By :([\\s\\S]+?)PAN No:', text)\n",
|
98 |
+
" if by_match:\n",
|
99 |
+
" invoice_details['Sold By'] = by_match.group(1).strip()\n",
|
100 |
+
" else:\n",
|
101 |
+
" print(\"No seller found in the invoice.\")\n",
|
102 |
+
" \n",
|
103 |
+
" return invoice_details"
|
104 |
+
]
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"cell_type": "code",
|
108 |
+
"execution_count": null,
|
109 |
+
"metadata": {},
|
110 |
+
"outputs": [],
|
111 |
+
"source": [
|
112 |
+
"for invoice in invoices:\n",
|
113 |
+
" # print(invoice)\n",
|
114 |
+
" details = extract_invoice_details(invoice)\n",
|
115 |
+
" save_as_csv(details)"
|
116 |
+
]
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"cell_type": "code",
|
120 |
+
"execution_count": null,
|
121 |
+
"metadata": {},
|
122 |
+
"outputs": [],
|
123 |
+
"source": [
|
124 |
+
"df = pd.read_csv('invoice.csv')\n",
|
125 |
+
"df.head(10)"
|
126 |
+
]
|
127 |
+
},
|
128 |
+
{
|
129 |
+
"cell_type": "code",
|
130 |
+
"execution_count": 8,
|
131 |
+
"metadata": {},
|
132 |
+
"outputs": [],
|
133 |
+
"source": [
|
134 |
+
"import PyPDF2, os, re\n",
|
135 |
+
"import pandas as pd\n",
|
136 |
+
"\n",
|
137 |
+
"class InvoiceConvertor:\n",
|
138 |
+
" \"\"\"\n",
|
139 |
+
" This class is hardcoded to read all pdf files that start with 'invoice' in the given user given path and convert them to a csv file.\n",
|
140 |
+
" \n",
|
141 |
+
" Usage:\n",
|
142 |
+
" convertor = InvoiceConvertor()\n",
|
143 |
+
" convertor.read_pdfs('path_to_pdfs')\n",
|
144 |
+
" result_df = convertor.convert()\n",
|
145 |
+
"\n",
|
146 |
+
" \"\"\"\n",
|
147 |
+
" def __init__(self):\n",
|
148 |
+
" self.invoices = []\n",
|
149 |
+
" \n",
|
150 |
+
" def read_pdfs(self,path):\n",
|
151 |
+
" for file in os.listdir(path):\n",
|
152 |
+
" if file.startswith('invoice'):\n",
|
153 |
+
" pdf_file = open(path + file, 'rb')\n",
|
154 |
+
" pdf_reader = PyPDF2.PdfReader(pdf_file)\n",
|
155 |
+
" text = ''\n",
|
156 |
+
" for page_num in range(len(pdf_reader.pages)):\n",
|
157 |
+
" page = pdf_reader.pages[page_num]\n",
|
158 |
+
" text += page.extract_text()\n",
|
159 |
+
" pdf_file.close()\n",
|
160 |
+
" self.invoices.append(text)\n",
|
161 |
+
" return self.invoices\n",
|
162 |
+
" \n",
|
163 |
+
" def save_as_csv(self, details, save_as = \"invoice.csv\"):\n",
|
164 |
+
" # if the csv already exists then concat a new one to it, else create a new one\n",
|
165 |
+
" if os.path.exists(save_as):\n",
|
166 |
+
" df = pd.read_csv(save_as)\n",
|
167 |
+
" df = pd.concat([df, pd.DataFrame(details, index=[0])], ignore_index=True)\n",
|
168 |
+
" else: \n",
|
169 |
+
" df = pd.DataFrame(details, index=[0])\n",
|
170 |
+
" df.to_csv(save_as, index=False)\n",
|
171 |
+
" \n",
|
172 |
+
" def extract_invoice_details(self, text):\n",
|
173 |
+
" invoice_details = {}\n",
|
174 |
+
" try:\n",
|
175 |
+
" invoice_details['Order Number'] = re.search(r'Order Number: (\\S+)', text).group(1)\n",
|
176 |
+
" invoice_details['Invoice Number'] = re.search(r'Invoice Number : (\\S+)', text).group(1)\n",
|
177 |
+
" invoice_details['Order Date'] = re.search(r'Order Date: (\\d{2}\\.\\d{2}\\.\\d{4})', text).group(1)\n",
|
178 |
+
" invoice_details['Invoice Details'] = re.search(r'Invoice Details : (\\S+)', text).group(1)\n",
|
179 |
+
" invoice_details['Invoice Date'] = re.search(r'Invoice Date : (\\d{2}\\.\\d{2}\\.\\d{4})', text).group(1)\n",
|
180 |
+
" invoice_details['Billing Address'] = re.search(r'Billing Address :([\\s\\S]+?)Shipping Address :', text).group(1).strip()\n",
|
181 |
+
" invoice_details['Shipping Address'] = re.search(r'Shipping Address :([\\s\\S]+?)Place of supply:', text).group(1).strip()\n",
|
182 |
+
" invoice_details['PAN'] = re.search(r'PAN No:(\\S+)', text).group(1)\n",
|
183 |
+
" except:\n",
|
184 |
+
" print('Order Number not found')\n",
|
185 |
+
"\n",
|
186 |
+
" item_match = re.search(r'1([\\s\\S]+?)TOTAL:', text, re.DOTALL)\n",
|
187 |
+
" if item_match:\n",
|
188 |
+
" item_info = item_match.group(1)\n",
|
189 |
+
" item_name = re.search(r'\\nAmount\\n1([\\s\\S]+?)₹', item_info).group(1).strip()\n",
|
190 |
+
" invoice_details['Item'] = item_name\n",
|
191 |
+
" # print(item_name)\n",
|
192 |
+
" else:\n",
|
193 |
+
" print(\"No item found in the invoice.\")\n",
|
194 |
+
" total_mount_match = re.search(r'TOTAL:([\\s\\S]+?)only', text, re.DOTALL)\n",
|
195 |
+
" if total_mount_match:\n",
|
196 |
+
" total_mount = total_mount_match.group(1).split('₹')[2].split('\\n')[0]\n",
|
197 |
+
" invoice_details['Total Amount'] = total_mount\n",
|
198 |
+
" else:\n",
|
199 |
+
" print(\"No total amount found in the invoice.\")\n",
|
200 |
+
" gstin_match = re.search(r'GST Registration No: ([\\s\\S]+?) ', text)\n",
|
201 |
+
" if gstin_match:\n",
|
202 |
+
" invoice_details['GSTIN'] = gstin_match.group(1).strip()\n",
|
203 |
+
" else:\n",
|
204 |
+
" print(\"No GSTIN found in the invoice.\")\n",
|
205 |
+
" by_match = re.search(r'By :([\\s\\S]+?)PAN No:', text)\n",
|
206 |
+
" if by_match:\n",
|
207 |
+
" invoice_details['Sold By'] = by_match.group(1).strip()\n",
|
208 |
+
" else:\n",
|
209 |
+
" print(\"No seller found in the invoice.\")\n",
|
210 |
+
" return invoice_details\n",
|
211 |
+
" \n",
|
212 |
+
" def convert(self):\n",
|
213 |
+
" for invoice in self.invoices:\n",
|
214 |
+
" details = self.extract_invoice_details(invoice)\n",
|
215 |
+
" self.save_as_csv(details)\n",
|
216 |
+
" return pd.read_csv('invoice.csv')"
|
217 |
+
]
|
218 |
+
},
|
219 |
+
{
|
220 |
+
"cell_type": "code",
|
221 |
+
"execution_count": 9,
|
222 |
+
"metadata": {},
|
223 |
+
"outputs": [
|
224 |
+
{
|
225 |
+
"name": "stdout",
|
226 |
+
"output_type": "stream",
|
227 |
+
"text": [
|
228 |
+
"Order Number not found\n"
|
229 |
+
]
|
230 |
+
},
|
231 |
+
{
|
232 |
+
"data": {
|
233 |
+
"text/html": [
|
234 |
+
"<div>\n",
|
235 |
+
"<style scoped>\n",
|
236 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
237 |
+
" vertical-align: middle;\n",
|
238 |
+
" }\n",
|
239 |
+
"\n",
|
240 |
+
" .dataframe tbody tr th {\n",
|
241 |
+
" vertical-align: top;\n",
|
242 |
+
" }\n",
|
243 |
+
"\n",
|
244 |
+
" .dataframe thead th {\n",
|
245 |
+
" text-align: right;\n",
|
246 |
+
" }\n",
|
247 |
+
"</style>\n",
|
248 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
249 |
+
" <thead>\n",
|
250 |
+
" <tr style=\"text-align: right;\">\n",
|
251 |
+
" <th></th>\n",
|
252 |
+
" <th>Order Number</th>\n",
|
253 |
+
" <th>Invoice Number</th>\n",
|
254 |
+
" <th>Order Date</th>\n",
|
255 |
+
" <th>Invoice Details</th>\n",
|
256 |
+
" <th>Invoice Date</th>\n",
|
257 |
+
" <th>Billing Address</th>\n",
|
258 |
+
" <th>Shipping Address</th>\n",
|
259 |
+
" <th>PAN</th>\n",
|
260 |
+
" <th>Item</th>\n",
|
261 |
+
" <th>Total Amount</th>\n",
|
262 |
+
" <th>GSTIN</th>\n",
|
263 |
+
" <th>Sold By</th>\n",
|
264 |
+
" </tr>\n",
|
265 |
+
" </thead>\n",
|
266 |
+
" <tbody>\n",
|
267 |
+
" <tr>\n",
|
268 |
+
" <th>0</th>\n",
|
269 |
+
" <td>402-7035529-3886722</td>\n",
|
270 |
+
" <td>NAG1-192347</td>\n",
|
271 |
+
" <td>17.08.2023</td>\n",
|
272 |
+
" <td>MH-NAG1-1034-2324</td>\n",
|
273 |
+
" <td>17.08.2023</td>\n",
|
274 |
+
" <td>Pratik Dwivedi \\nBennett University, Plot Nos ...</td>\n",
|
275 |
+
" <td>Pratik Dwivedi \\nPratik Dwivedi \\nBennett Univ...</td>\n",
|
276 |
+
" <td>AALCA0171E</td>\n",
|
277 |
+
" <td>Cosmic Byte CB-EP-05 Wired Gaming in Ear Earph...</td>\n",
|
278 |
+
" <td>458.0</td>\n",
|
279 |
+
" <td>27AALCA0171E1ZZ</td>\n",
|
280 |
+
" <td>Appario Retail Private Ltd \\n*TCI Supply Chain...</td>\n",
|
281 |
+
" </tr>\n",
|
282 |
+
" <tr>\n",
|
283 |
+
" <th>1</th>\n",
|
284 |
+
" <td>402-7035529-3886722</td>\n",
|
285 |
+
" <td>BOM5-1379800</td>\n",
|
286 |
+
" <td>17.08.2023</td>\n",
|
287 |
+
" <td>MH-BOM5-1034-2324</td>\n",
|
288 |
+
" <td>17.08.2023</td>\n",
|
289 |
+
" <td>Pratik Dwivedi \\nBennett University, Plot Nos ...</td>\n",
|
290 |
+
" <td>Pratik Dwivedi \\nPratik Dwivedi \\nBennett Univ...</td>\n",
|
291 |
+
" <td>AALCA0171E</td>\n",
|
292 |
+
" <td>LG Ultragear IPS Gaming Monitor 60 cm (24\\nInc...</td>\n",
|
293 |
+
" <td>13,099.00</td>\n",
|
294 |
+
" <td>27AALCA0171E1ZZ</td>\n",
|
295 |
+
" <td>Appario Retail Private Ltd \\n*Renaissance indu...</td>\n",
|
296 |
+
" </tr>\n",
|
297 |
+
" <tr>\n",
|
298 |
+
" <th>2</th>\n",
|
299 |
+
" <td>405-4419941-9848328</td>\n",
|
300 |
+
" <td>DEX3-4683</td>\n",
|
301 |
+
" <td>23.07.2023</td>\n",
|
302 |
+
" <td>DL-DEX3-157533501-2324</td>\n",
|
303 |
+
" <td>23.07.2023</td>\n",
|
304 |
+
" <td>Pratik Dwivedi \\nC- 123 Sector 26, Sector 26 N...</td>\n",
|
305 |
+
" <td>Pratik Dwivedi \\nPratik Dwivedi \\nC- 123 Secto...</td>\n",
|
306 |
+
" <td>ABEPW6057C</td>\n",
|
307 |
+
" <td>Amozo Easy Fit Tempered Glass Screen Protector...</td>\n",
|
308 |
+
" <td>474.00</td>\n",
|
309 |
+
" <td>07ABEPW6057C1ZK</td>\n",
|
310 |
+
" <td>RADHIKA WALIA \\n*Plot no 28, Block A, Mohan Co...</td>\n",
|
311 |
+
" </tr>\n",
|
312 |
+
" <tr>\n",
|
313 |
+
" <th>3</th>\n",
|
314 |
+
" <td>405-4419941-9848328</td>\n",
|
315 |
+
" <td>HYD8-29019</td>\n",
|
316 |
+
" <td>23.07.2023</td>\n",
|
317 |
+
" <td>TG-HYD8-817549015-2324</td>\n",
|
318 |
+
" <td>23.07.2023</td>\n",
|
319 |
+
" <td>Pratik Dwivedi \\nC- 123 Sector 26, Sector 26 N...</td>\n",
|
320 |
+
" <td>Pratik Dwivedi \\nPratik Dwivedi \\nC- 123 Secto...</td>\n",
|
321 |
+
" <td>AACCN8253B</td>\n",
|
322 |
+
" <td>ESR for iPhone 13/14 Cover, Shockproof Drop Pr...</td>\n",
|
323 |
+
" <td>399.00</td>\n",
|
324 |
+
" <td>36AACCN8253B1ZN</td>\n",
|
325 |
+
" <td>TIGER PUG COMMERCE PRIVATE LIMITED \\n*GMR Airp...</td>\n",
|
326 |
+
" </tr>\n",
|
327 |
+
" <tr>\n",
|
328 |
+
" <th>4</th>\n",
|
329 |
+
" <td>405-0015964-5687515</td>\n",
|
330 |
+
" <td>IN-5040</td>\n",
|
331 |
+
" <td>23.07.2023</td>\n",
|
332 |
+
" <td>DL-1922955505-2324</td>\n",
|
333 |
+
" <td>23.07.2023</td>\n",
|
334 |
+
" <td>Pratik Dwivedi \\nC- 123 Sector 26, Sector 26 N...</td>\n",
|
335 |
+
" <td>Pratik Dwivedi \\nPratik Dwivedi \\nC- 123 Secto...</td>\n",
|
336 |
+
" <td>JISPS4412R</td>\n",
|
337 |
+
" <td>imluckies Camera Lens Protector Compatible wit...</td>\n",
|
338 |
+
" <td>149.00</td>\n",
|
339 |
+
" <td>07JISPS4412R1Z4</td>\n",
|
340 |
+
" <td>M.A.ENTERPRISES \\n*D2/235 GALI NO 6, 3rd PUSTA...</td>\n",
|
341 |
+
" </tr>\n",
|
342 |
+
" <tr>\n",
|
343 |
+
" <th>5</th>\n",
|
344 |
+
" <td>408-4974466-7793143</td>\n",
|
345 |
+
" <td>JPX2-223775</td>\n",
|
346 |
+
" <td>02.01.2024</td>\n",
|
347 |
+
" <td>RJ-JPX2-1317922175-2324</td>\n",
|
348 |
+
" <td>02.01.2024</td>\n",
|
349 |
+
" <td>Devpal \\n514/3, Ganesh vihar \\nROORKEE, UTTARA...</td>\n",
|
350 |
+
" <td>Devpal \\nDevpal \\n514/3, Ganesh vihar \\nROORKE...</td>\n",
|
351 |
+
" <td>AADCV4254H</td>\n",
|
352 |
+
" <td>Amazon Basics Sleek Rechargeable LED Table Lam...</td>\n",
|
353 |
+
" <td>569.00</td>\n",
|
354 |
+
" <td>08AADCV4254H1Z8</td>\n",
|
355 |
+
" <td>ETRADE MARKETING PRIVATE LIMITED \\n*Kh No 554 ...</td>\n",
|
356 |
+
" </tr>\n",
|
357 |
+
" <tr>\n",
|
358 |
+
" <th>6</th>\n",
|
359 |
+
" <td>NaN</td>\n",
|
360 |
+
" <td>NaN</td>\n",
|
361 |
+
" <td>NaN</td>\n",
|
362 |
+
" <td>NaN</td>\n",
|
363 |
+
" <td>NaN</td>\n",
|
364 |
+
" <td>NaN</td>\n",
|
365 |
+
" <td>NaN</td>\n",
|
366 |
+
" <td>NaN</td>\n",
|
367 |
+
" <td>Saregama Carvaan Telugu - Portable Music Playe...</td>\n",
|
368 |
+
" <td>6,320.00</td>\n",
|
369 |
+
" <td>36AARCA3925C1ZQBilling</td>\n",
|
370 |
+
" <td>AATS Connect Private Limited \\n* GMR Airport C...</td>\n",
|
371 |
+
" </tr>\n",
|
372 |
+
" </tbody>\n",
|
373 |
+
"</table>\n",
|
374 |
+
"</div>"
|
375 |
+
],
|
376 |
+
"text/plain": [
|
377 |
+
" Order Number Invoice Number Order Date Invoice Details \\\n",
|
378 |
+
"0 402-7035529-3886722 NAG1-192347 17.08.2023 MH-NAG1-1034-2324 \n",
|
379 |
+
"1 402-7035529-3886722 BOM5-1379800 17.08.2023 MH-BOM5-1034-2324 \n",
|
380 |
+
"2 405-4419941-9848328 DEX3-4683 23.07.2023 DL-DEX3-157533501-2324 \n",
|
381 |
+
"3 405-4419941-9848328 HYD8-29019 23.07.2023 TG-HYD8-817549015-2324 \n",
|
382 |
+
"4 405-0015964-5687515 IN-5040 23.07.2023 DL-1922955505-2324 \n",
|
383 |
+
"5 408-4974466-7793143 JPX2-223775 02.01.2024 RJ-JPX2-1317922175-2324 \n",
|
384 |
+
"6 NaN NaN NaN NaN \n",
|
385 |
+
"\n",
|
386 |
+
" Invoice Date Billing Address \\\n",
|
387 |
+
"0 17.08.2023 Pratik Dwivedi \\nBennett University, Plot Nos ... \n",
|
388 |
+
"1 17.08.2023 Pratik Dwivedi \\nBennett University, Plot Nos ... \n",
|
389 |
+
"2 23.07.2023 Pratik Dwivedi \\nC- 123 Sector 26, Sector 26 N... \n",
|
390 |
+
"3 23.07.2023 Pratik Dwivedi \\nC- 123 Sector 26, Sector 26 N... \n",
|
391 |
+
"4 23.07.2023 Pratik Dwivedi \\nC- 123 Sector 26, Sector 26 N... \n",
|
392 |
+
"5 02.01.2024 Devpal \\n514/3, Ganesh vihar \\nROORKEE, UTTARA... \n",
|
393 |
+
"6 NaN NaN \n",
|
394 |
+
"\n",
|
395 |
+
" Shipping Address PAN \\\n",
|
396 |
+
"0 Pratik Dwivedi \\nPratik Dwivedi \\nBennett Univ... AALCA0171E \n",
|
397 |
+
"1 Pratik Dwivedi \\nPratik Dwivedi \\nBennett Univ... AALCA0171E \n",
|
398 |
+
"2 Pratik Dwivedi \\nPratik Dwivedi \\nC- 123 Secto... ABEPW6057C \n",
|
399 |
+
"3 Pratik Dwivedi \\nPratik Dwivedi \\nC- 123 Secto... AACCN8253B \n",
|
400 |
+
"4 Pratik Dwivedi \\nPratik Dwivedi \\nC- 123 Secto... JISPS4412R \n",
|
401 |
+
"5 Devpal \\nDevpal \\n514/3, Ganesh vihar \\nROORKE... AADCV4254H \n",
|
402 |
+
"6 NaN NaN \n",
|
403 |
+
"\n",
|
404 |
+
" Item Total Amount \\\n",
|
405 |
+
"0 Cosmic Byte CB-EP-05 Wired Gaming in Ear Earph... 458.0 \n",
|
406 |
+
"1 LG Ultragear IPS Gaming Monitor 60 cm (24\\nInc... 13,099.00 \n",
|
407 |
+
"2 Amozo Easy Fit Tempered Glass Screen Protector... 474.00 \n",
|
408 |
+
"3 ESR for iPhone 13/14 Cover, Shockproof Drop Pr... 399.00 \n",
|
409 |
+
"4 imluckies Camera Lens Protector Compatible wit... 149.00 \n",
|
410 |
+
"5 Amazon Basics Sleek Rechargeable LED Table Lam... 569.00 \n",
|
411 |
+
"6 Saregama Carvaan Telugu - Portable Music Playe... 6,320.00 \n",
|
412 |
+
"\n",
|
413 |
+
" GSTIN Sold By \n",
|
414 |
+
"0 27AALCA0171E1ZZ Appario Retail Private Ltd \\n*TCI Supply Chain... \n",
|
415 |
+
"1 27AALCA0171E1ZZ Appario Retail Private Ltd \\n*Renaissance indu... \n",
|
416 |
+
"2 07ABEPW6057C1ZK RADHIKA WALIA \\n*Plot no 28, Block A, Mohan Co... \n",
|
417 |
+
"3 36AACCN8253B1ZN TIGER PUG COMMERCE PRIVATE LIMITED \\n*GMR Airp... \n",
|
418 |
+
"4 07JISPS4412R1Z4 M.A.ENTERPRISES \\n*D2/235 GALI NO 6, 3rd PUSTA... \n",
|
419 |
+
"5 08AADCV4254H1Z8 ETRADE MARKETING PRIVATE LIMITED \\n*Kh No 554 ... \n",
|
420 |
+
"6 36AARCA3925C1ZQBilling AATS Connect Private Limited \\n* GMR Airport C... "
|
421 |
+
]
|
422 |
+
},
|
423 |
+
"execution_count": 9,
|
424 |
+
"metadata": {},
|
425 |
+
"output_type": "execute_result"
|
426 |
+
}
|
427 |
+
],
|
428 |
+
"source": [
|
429 |
+
"invoice_convertor = InvoiceConvertor()\n",
|
430 |
+
"invoice_convertor.read_pdfs('invoices/')\n",
|
431 |
+
"res = invoice_convertor.convert()\n",
|
432 |
+
"res.head(10)"
|
433 |
+
]
|
434 |
+
},
|
435 |
+
{
|
436 |
+
"cell_type": "code",
|
437 |
+
"execution_count": null,
|
438 |
+
"metadata": {},
|
439 |
+
"outputs": [],
|
440 |
+
"source": []
|
441 |
+
}
|
442 |
+
],
|
443 |
+
"metadata": {
|
444 |
+
"kernelspec": {
|
445 |
+
"display_name": "resparser",
|
446 |
+
"language": "python",
|
447 |
+
"name": "python3"
|
448 |
+
},
|
449 |
+
"language_info": {
|
450 |
+
"codemirror_mode": {
|
451 |
+
"name": "ipython",
|
452 |
+
"version": 3
|
453 |
+
},
|
454 |
+
"file_extension": ".py",
|
455 |
+
"mimetype": "text/x-python",
|
456 |
+
"name": "python",
|
457 |
+
"nbconvert_exporter": "python",
|
458 |
+
"pygments_lexer": "ipython3",
|
459 |
+
"version": "3.9.16"
|
460 |
+
}
|
461 |
+
},
|
462 |
+
"nbformat": 4,
|
463 |
+
"nbformat_minor": 2
|
464 |
+
}
|
invoice_convertor.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import PyPDF2, os, re
|
2 |
+
import pandas as pd
|
3 |
+
|
4 |
+
class InvoiceConvertor():
|
5 |
+
"""
|
6 |
+
This class is hardcoded to read all pdf files that start with 'invoice' in the given user given path and convert them to a csv file.
|
7 |
+
|
8 |
+
Usage:
|
9 |
+
convertor = InvoiceConvertor()
|
10 |
+
convertor.read_pdfs('path_to_pdfs')
|
11 |
+
result_df = convertor.convert()
|
12 |
+
|
13 |
+
"""
|
14 |
+
def __init__(self):
|
15 |
+
self.invoices = []
|
16 |
+
|
17 |
+
def read_pdfs(self,path):
|
18 |
+
for file in os.listdir(path):
|
19 |
+
if file.startswith('invoice'):
|
20 |
+
pdf_file = open(path + file, 'rb')
|
21 |
+
pdf_reader = PyPDF2.PdfReader(pdf_file)
|
22 |
+
text = ''
|
23 |
+
for page_num in range(len(pdf_reader.pages)):
|
24 |
+
page = pdf_reader.pages[page_num]
|
25 |
+
text += page.extract_text()
|
26 |
+
pdf_file.close()
|
27 |
+
self.invoices.append(text)
|
28 |
+
return self.invoices
|
29 |
+
|
30 |
+
def save_as_csv(self, details, save_as = "invoice.csv"):
|
31 |
+
# if the csv already exists then concat a new one to it, else create a new one
|
32 |
+
if os.path.exists(save_as):
|
33 |
+
df = pd.read_csv(save_as)
|
34 |
+
df = pd.concat([df, pd.DataFrame(details, index=[0])], ignore_index=True)
|
35 |
+
else:
|
36 |
+
df = pd.DataFrame(details, index=[0])
|
37 |
+
df.to_csv(save_as, index=False)
|
38 |
+
|
39 |
+
def extract_invoice_details(self, text):
|
40 |
+
invoice_details = {}
|
41 |
+
try:
|
42 |
+
invoice_details['Order Number'] = re.search(r'Order Number: (\S+)', text).group(1)
|
43 |
+
invoice_details['Invoice Number'] = re.search(r'Invoice Number : (\S+)', text).group(1)
|
44 |
+
invoice_details['Order Date'] = re.search(r'Order Date: (\d{2}\.\d{2}\.\d{4})', text).group(1)
|
45 |
+
invoice_details['Invoice Details'] = re.search(r'Invoice Details : (\S+)', text).group(1)
|
46 |
+
invoice_details['Invoice Date'] = re.search(r'Invoice Date : (\d{2}\.\d{2}\.\d{4})', text).group(1)
|
47 |
+
invoice_details['Billing Address'] = re.search(r'Billing Address :([\s\S]+?)Shipping Address :', text).group(1).strip()
|
48 |
+
invoice_details['Shipping Address'] = re.search(r'Shipping Address :([\s\S]+?)Place of supply:', text).group(1).strip()
|
49 |
+
invoice_details['PAN'] = re.search(r'PAN No:(\S+)', text).group(1)
|
50 |
+
except:
|
51 |
+
print('Order Number not found')
|
52 |
+
|
53 |
+
item_match = re.search(r'1([\s\S]+?)TOTAL:', text, re.DOTALL)
|
54 |
+
if item_match:
|
55 |
+
item_info = item_match.group(1)
|
56 |
+
item_name = re.search(r'\nAmount\n1([\s\S]+?)₹', item_info).group(1).strip()
|
57 |
+
invoice_details['Item'] = item_name
|
58 |
+
# print(item_name)
|
59 |
+
else:
|
60 |
+
print("No item found in the invoice.")
|
61 |
+
total_mount_match = re.search(r'TOTAL:([\s\S]+?)only', text, re.DOTALL)
|
62 |
+
if total_mount_match:
|
63 |
+
total_mount = total_mount_match.group(1).split('₹')[2].split('\n')[0]
|
64 |
+
invoice_details['Total Amount'] = total_mount
|
65 |
+
else:
|
66 |
+
print("No total amount found in the invoice.")
|
67 |
+
gstin_match = re.search(r'GST Registration No: ([\s\S]+?) ', text)
|
68 |
+
if gstin_match:
|
69 |
+
invoice_details['GSTIN'] = gstin_match.group(1).strip()
|
70 |
+
else:
|
71 |
+
print("No GSTIN found in the invoice.")
|
72 |
+
by_match = re.search(r'By :([\s\S]+?)PAN No:', text)
|
73 |
+
if by_match:
|
74 |
+
invoice_details['Sold By'] = by_match.group(1).strip()
|
75 |
+
else:
|
76 |
+
print("No seller found in the invoice.")
|
77 |
+
return invoice_details
|
78 |
+
|
79 |
+
def convert(self):
|
80 |
+
for invoice in self.invoices:
|
81 |
+
details = self.extract_invoice_details(invoice)
|
82 |
+
self.save_as_csv(details)
|
83 |
+
return pd.read_csv('invoice.csv')
|
84 |
+
|
invoices/invoice1.pdf
ADDED
Binary file (48.3 kB). View file
|
|
invoices/invoice2.pdf
ADDED
Binary file (48.4 kB). View file
|
|
invoices/invoice3.pdf
ADDED
Binary file (54.2 kB). View file
|
|
invoices/invoice4.pdf
ADDED
Binary file (103 kB). View file
|
|
invoices/invoice5.pdf
ADDED
Binary file (48 kB). View file
|
|
invoices/invoice7.pdf
ADDED
Binary file (50.2 kB). View file
|
|
invoices/invoice8.pdf
ADDED
Binary file (43.9 kB). View file
|
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit==1.32.2
|
2 |
+
pyPDF2==3.0.1
|
3 |
+
pandas==1.3.5
|
4 |
+
regex==2023.12.25
|